Abstract
The energetics of barstar denaturation have been studied by CD and scanning microcalorimetry in an extended range of pH and salt concentration. It was shown that, upon increasing temperature, barstar undergoes a transition to the denatured state that is well approximated by a two-state transition in solutions of high ionic strength. This transition is accompanied by significant heat absorption and an increase in heat capacity. The denaturational heat capacity increment at approximately 75 degrees C was found to be 5.6 +/- 0.3 kJ K-1 mol-1. In all cases, the value of the measured enthalpy of denaturation was notably lower than those observed for other small globular proteins. In order to explain this observation, the relative contributions of hydration and the disruption of internal interactions to the total enthalpy and entropy of unfolding were calculated. The enthalpy and entropy of hydration were found to be in good agreement with those calculated for other proteins, but the enthalpy and entropy of breaking internal interactions were found to be among the lowest for all globular proteins that have been studied. Additionally, the partial specific heat capacity of barstar in the native state was found to be 0.37 +/- 0.03 cal K-1 g-1, which is higher than what is observed for most globular proteins and suggests significant flexibility in the native state. It is known from structural data that barstar undergoes a conformational change upon binding to its natural substrate barnase.(ABSTRACT TRUNCATED AT 250 WORDS)
Full Text
The Full Text of this article is available as a PDF (611.2 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Agashe V. R., Udgaonkar J. B. Thermodynamics of denaturation of barstar: evidence for cold denaturation and evaluation of the interaction with guanidine hydrochloride. Biochemistry. 1995 Mar 14;34(10):3286–3299. doi: 10.1021/bi00010a019. [DOI] [PubMed] [Google Scholar]
- Buckle A. M., Schreiber G., Fersht A. R. Protein-protein recognition: crystal structural analysis of a barnase-barstar complex at 2.0-A resolution. Biochemistry. 1994 Aug 2;33(30):8878–8889. doi: 10.1021/bi00196a004. [DOI] [PubMed] [Google Scholar]
- Bycroft M., Ludvigsen S., Fersht A. R., Poulsen F. M. Determination of the three-dimensional solution structure of barnase using nuclear magnetic resonance spectroscopy. Biochemistry. 1991 Sep 3;30(35):8697–8701. doi: 10.1021/bi00099a030. [DOI] [PubMed] [Google Scholar]
- Gill S. C., von Hippel P. H. Calculation of protein extinction coefficients from amino acid sequence data. Anal Biochem. 1989 Nov 1;182(2):319–326. doi: 10.1016/0003-2697(89)90602-7. [DOI] [PubMed] [Google Scholar]
- Griko Y. V., Makhatadze G. I., Privalov P. L., Hartley R. W. Thermodynamics of barnase unfolding. Protein Sci. 1994 Apr;3(4):669–676. doi: 10.1002/pro.5560030414. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Guillet V., Lapthorn A., Hartley R. W., Mauguen Y. Recognition between a bacterial ribonuclease, barnase, and its natural inhibitor, barstar. Structure. 1993 Nov 15;1(3):165–176. doi: 10.1016/0969-2126(93)90018-c. [DOI] [PubMed] [Google Scholar]
- Hartley R. W. A reversible thermal transition of the extracellular ribonuclease of Bacillus amyloliquefaciens. Biochemistry. 1968 Jun;7(6):2401–2408. doi: 10.1021/bi00846a050. [DOI] [PubMed] [Google Scholar]
- Hartley R. W. A two-state conformational transition of the extracellular ribonuclease of Bacillus amyloliquefaciens (barnase) induced by sodium dodecyl sulfate. Biochemistry. 1975 Jun 3;14(11):2367–2370. doi: 10.1021/bi00682a015. [DOI] [PubMed] [Google Scholar]
- Hartley R. W. Directed mutagenesis and barnase-barstar recognition. Biochemistry. 1993 Jun 15;32(23):5978–5984. doi: 10.1021/bi00074a008. [DOI] [PubMed] [Google Scholar]
- Khurana R., Udgaonkar J. B. Equilibrium unfolding studies of barstar: evidence for an alternative conformation which resembles a molten globule. Biochemistry. 1994 Jan 11;33(1):106–115. doi: 10.1021/bi00167a014. [DOI] [PubMed] [Google Scholar]
- Klibanov A. M. Stabilization of enzymes against thermal inactivation. Adv Appl Microbiol. 1983;29:1–28. doi: 10.1016/s0065-2164(08)70352-6. [DOI] [PubMed] [Google Scholar]
- Lubienski M. J., Bycroft M., Freund S. M., Fersht A. R. Three-dimensional solution structure and 13C assignments of barstar using nuclear magnetic resonance spectroscopy. Biochemistry. 1994 Aug 2;33(30):8866–8877. [PubMed] [Google Scholar]
- Makarov A. A., Protasevich I. I., Kuznetsova N. V., Fedorov B. B., Korolev S. V., Struminskaya N. K., Bazhulina N. P., Leshchinskaya I. B., Hartley R. W., Kirpichnikov M. P. Comparative study of thermostability and structure of close homologues--barnase and binase. J Biomol Struct Dyn. 1993 Jun;10(6):1047–1065. doi: 10.1080/07391102.1993.10508695. [DOI] [PubMed] [Google Scholar]
- Makhatadze G. I., Medvedkin V. N., Privalov P. L. Partial molar volumes of polypeptides and their constituent groups in aqueous solution over a broad temperature range. Biopolymers. 1990;30(11-12):1001–1010. doi: 10.1002/bip.360301102. [DOI] [PubMed] [Google Scholar]
- Makhatadze G. I., Privalov P. L. Heat capacity of proteins. I. Partial molar heat capacity of individual amino acid residues in aqueous solution: hydration effect. J Mol Biol. 1990 May 20;213(2):375–384. doi: 10.1016/S0022-2836(05)80197-4. [DOI] [PubMed] [Google Scholar]
- Makhatadze G. I., Privalov P. L. Hydration effects in protein unfolding. Biophys Chem. 1994 Aug;51(2-3):291–309. doi: 10.1016/0301-4622(94)00050-6. [DOI] [PubMed] [Google Scholar]
- Mauguen Y., Hartley R. W., Dodson E. J., Dodson G. G., Bricogne G., Chothia C., Jack A. Molecular structure of a new family of ribonucleases. Nature. 1982 May 13;297(5862):162–164. doi: 10.1038/297162a0. [DOI] [PubMed] [Google Scholar]
- Privalov P. L., Makhatadze G. I. Contribution of hydration to protein folding thermodynamics. II. The entropy and Gibbs energy of hydration. J Mol Biol. 1993 Jul 20;232(2):660–679. doi: 10.1006/jmbi.1993.1417. [DOI] [PubMed] [Google Scholar]
- Privalov P. L., Makhatadze G. I. Heat capacity of proteins. II. Partial molar heat capacity of the unfolded polypeptide chain of proteins: protein unfolding effects. J Mol Biol. 1990 May 20;213(2):385–391. doi: 10.1016/S0022-2836(05)80198-6. [DOI] [PubMed] [Google Scholar]
- Privalov P. L., Potekhin S. A. Scanning microcalorimetry in studying temperature-induced changes in proteins. Methods Enzymol. 1986;131:4–51. doi: 10.1016/0076-6879(86)31033-4. [DOI] [PubMed] [Google Scholar]
- Privalov P. L. Stability of proteins: small globular proteins. Adv Protein Chem. 1979;33:167–241. doi: 10.1016/s0065-3233(08)60460-x. [DOI] [PubMed] [Google Scholar]
- Privalov P. L., Tiktopulo E. I., Venyaminov SYu, Griko YuV, Makhatadze G. I., Khechinashvili N. N. Heat capacity and conformation of proteins in the denatured state. J Mol Biol. 1989 Feb 20;205(4):737–750. doi: 10.1016/0022-2836(89)90318-5. [DOI] [PubMed] [Google Scholar]
- Rashin A. A. Buried surface area, conformational entropy, and protein stability. Biopolymers. 1984 Aug;23(8):1605–1620. doi: 10.1002/bip.360230813. [DOI] [PubMed] [Google Scholar]
- Richarz R., Nagayama K., Wüthrich K. Carbon-13 nuclear magnetic resonance relaxation studies of internal mobility of the polypeptide chain in basic pancreatic trypsin inhibitor and a selectively reduced analogue. Biochemistry. 1980 Nov 11;19(23):5189–5196. doi: 10.1021/bi00564a006. [DOI] [PubMed] [Google Scholar]
- Sanz J. M., Johnson C. M., Fersht A. R. The A-state of barnase. Biochemistry. 1994 Sep 20;33(37):11189–11199. doi: 10.1021/bi00203a015. [DOI] [PubMed] [Google Scholar]
- Winder A. F., Gent W. L. Correction of light-scattering errors in spectrophotometric protein determinations. Biopolymers. 1971;10(7):1243–1251. doi: 10.1002/bip.360100713. [DOI] [PubMed] [Google Scholar]