Abstract
Far-UV CD, 1H-NMR, and Fourier transform infrared (FTIR) spectroscopy are three of the most commonly used methods for the determination of protein secondary structure composition. These methods are compared and evaluated as a means of establishing isostructural metal substitution in metalloproteins, using the crystallographically defined rubredoxin from Desulfovibrio gigas and its well-characterized cadmium derivative as a model system. It is concluded that analysis of the FTIR spectrum of the protein amide I resonance represents the most facile and generally applicable method of determining whether the overall structure of a metalloprotein has been altered upon metal reconstitution. This technique requires relatively little biological material (ca. 300 micrograms total protein) and, unlike either CD or 1H-NMR spectroscopy, is unaffected by the presence of different metal ions, thus allowing the direct comparison of FTIR spectra before and after metal substitution.
Full Text
The Full Text of this article is available as a PDF (2.2 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bowler B. E., May K., Zaragoza T., York P., Dong A., Caughey W. S. Destabilizing effects of replacing a surface lysine of cytochrome c with aromatic amino acids: implications for the denatured state. Biochemistry. 1993 Jan 12;32(1):183–190. doi: 10.1021/bi00052a024. [DOI] [PubMed] [Google Scholar]
- Coleman J. E. Cadmium-113 nuclear magnetic resonance applied to metalloproteins. Methods Enzymol. 1993;227:16–43. doi: 10.1016/0076-6879(93)27004-z. [DOI] [PubMed] [Google Scholar]
- Compton L. A., Johnson W. C., Jr Analysis of protein circular dichroism spectra for secondary structure using a simple matrix multiplication. Anal Biochem. 1986 May 15;155(1):155–167. doi: 10.1016/0003-2697(86)90241-1. [DOI] [PubMed] [Google Scholar]
- Dousseau F., Pézolet M. Determination of the secondary structure content of proteins in aqueous solutions from their amide I and amide II infrared bands. Comparison between classical and partial least-squares methods. Biochemistry. 1990 Sep 18;29(37):8771–8779. doi: 10.1021/bi00489a038. [DOI] [PubMed] [Google Scholar]
- Drum D. E., Vallee B. L. Optical properties of catalytically active cobalt and cadmium liver alcohol dehydrogenases. Biochem Biophys Res Commun. 1970 Oct 9;41(1):33–39. doi: 10.1016/0006-291x(70)90464-x. [DOI] [PubMed] [Google Scholar]
- Frey M., Sieker L., Payan F., Haser R., Bruschi M., Pepe G., LeGall J. Rubredoxin from Desulfovibrio gigas. A molecular model of the oxidized form at 1.4 A resolution. J Mol Biol. 1987 Oct 5;197(3):525–541. doi: 10.1016/0022-2836(87)90562-6. [DOI] [PubMed] [Google Scholar]
- Haris P. I., Chapman D. Does Fourier-transform infrared spectroscopy provide useful information on protein structures? Trends Biochem Sci. 1992 Sep;17(9):328–333. doi: 10.1016/0968-0004(92)90305-s. [DOI] [PubMed] [Google Scholar]
- Henehan C. J., Pountney D. L., Zerbe O., Vasák M. Identification of cysteine ligands in metalloproteins using optical and NMR spectroscopy: cadmium-substituted rubredoxin as a model [Cd(CysS)4]2- center. Protein Sci. 1993 Oct;2(10):1756–1764. doi: 10.1002/pro.5560021019. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jackson M., Haris P. I., Chapman D. Fourier transform infrared spectroscopic studies of Ca(2+)-binding proteins. Biochemistry. 1991 Oct 8;30(40):9681–9686. doi: 10.1021/bi00104a016. [DOI] [PubMed] [Google Scholar]
- Kabsch W., Sander C. Dictionary of protein secondary structure: pattern recognition of hydrogen-bonded and geometrical features. Biopolymers. 1983 Dec;22(12):2577–2637. doi: 10.1002/bip.360221211. [DOI] [PubMed] [Google Scholar]
- Lee D. C., Haris P. I., Chapman D., Mitchell R. C. Determination of protein secondary structure using factor analysis of infrared spectra. Biochemistry. 1990 Oct 2;29(39):9185–9193. doi: 10.1021/bi00491a012. [DOI] [PubMed] [Google Scholar]
- Manavalan P., Johnson W. C., Jr Variable selection method improves the prediction of protein secondary structure from circular dichroism spectra. Anal Biochem. 1987 Nov 15;167(1):76–85. doi: 10.1016/0003-2697(87)90135-7. [DOI] [PubMed] [Google Scholar]
- Maret W., Vallee B. L. Cobalt as probe and label of proteins. Methods Enzymol. 1993;226:52–71. doi: 10.1016/0076-6879(93)26005-t. [DOI] [PubMed] [Google Scholar]
- Moura I., Teixeira M., LeGall J., Moura J. J. Spectroscopic studies of cobalt and nickel substituted rubredoxin and desulforedoxin. J Inorg Biochem. 1991 Nov;44(2):127–139. doi: 10.1016/0162-0134(91)84025-5. [DOI] [PubMed] [Google Scholar]
- Münck E., Surerus K. K., Hendrich M. P. Combining Mössbauer spectroscopy with integer spin electron paramagnetic resonance. Methods Enzymol. 1993;227:463–479. doi: 10.1016/0076-6879(93)27019-d. [DOI] [PubMed] [Google Scholar]
- Perczel A., Fasman G. D. Quantitative analysis of cyclic beta-turn models. Protein Sci. 1992 Mar;1(3):378–395. doi: 10.1002/pro.5560010310. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Perczel A., Hollósi M., Tusnády G., Fasman G. D. Convex constraint analysis: a natural deconvolution of circular dichroism curves of proteins. Protein Eng. 1991 Aug;4(6):669–679. doi: 10.1093/protein/4.6.669. [DOI] [PubMed] [Google Scholar]
- Surewicz W. K., Mantsch H. H., Chapman D. Determination of protein secondary structure by Fourier transform infrared spectroscopy: a critical assessment. Biochemistry. 1993 Jan 19;32(2):389–394. doi: 10.1021/bi00053a001. [DOI] [PubMed] [Google Scholar]
- Wishart D. S., Sykes B. D., Richards F. M. Simple techniques for the quantification of protein secondary structure by 1H NMR spectroscopy. FEBS Lett. 1991 Nov 18;293(1-2):72–80. doi: 10.1016/0014-5793(91)81155-2. [DOI] [PubMed] [Google Scholar]
- Yang J. T., Wu C. S., Martinez H. M. Calculation of protein conformation from circular dichroism. Methods Enzymol. 1986;130:208–269. doi: 10.1016/0076-6879(86)30013-2. [DOI] [PubMed] [Google Scholar]