Abstract
Mammalian electron transfer flavoprotein (ETF) is a soluble, heterodimeric flavoprotein responsible for the oxidation of at least nine primary matrix flavoprotein dehydrogenases. Crystals have been obtained for the recombinant human electron transfer flavoprotein (ETFhum) by the sitting-drop vapor diffusion technique using polyethylene glycol (PEG) 1500 at pH 7.0 as the precipitating agent. ETFhum crystallizes in the monoclinic space group P2(1), with unit cell parameters a = 47.46 angstrum, b = 104.10 angstrum, c = 63.79 angstrum, and beta = 110.02 degrees. Based on the assumption of one alpha beta dimer per asymmetric unit, the Vm value is 2.69 angstrum 3/Da. A native data set has been collected to 2.1 angstrum resolution. One heavy-atom derivative has also been obtained by soaking a preformed crystal of ETFhum in 2 mM thimerosal solution for 2h at 19 degrees C. Patterson analysis indicates one major site. The analogous electron transfer flavoprotein from Paracoccus denitrificans (ETFpar) has also been crystallized using PEG 8000 at pH 5.5 as the precipitating agent. ETFpar crystallizes in the orthorhombic space group P2(1)2(1)2(1), with unit cell parameters a = 79.98 angstrum, b = 182.90 angstrum, and c = 70.07 angstrum. The Vm value of 2.33 angstrum 3/Da is consistent with two alpha beta dimers per asymmetric unit. A native data set has been collected to 2.5 angstrum resolution.
Full Text
The Full Text of this article is available as a PDF (1.2 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Arigoni F., Kaminski P. A., Hennecke H., Elmerich C. Nucleotide sequence of the fixABC region of Azorhizobium caulinodans ORS571: similarity of the fixB product with eukaryotic flavoproteins, characterization of fixX, and identification of nifW. Mol Gen Genet. 1991 Mar;225(3):514–520. doi: 10.1007/BF00261695. [DOI] [PubMed] [Google Scholar]
- Beckmann J. D., Frerman F. E. Electron-transfer flavoprotein-ubiquinone oxidoreductase from pig liver: purification and molecular, redox, and catalytic properties. Biochemistry. 1985 Jul 16;24(15):3913–3921. doi: 10.1021/bi00336a016. [DOI] [PubMed] [Google Scholar]
- Bedzyk L. A., Escudero K. W., Gill R. E., Griffin K. J., Frerman F. E. Cloning, sequencing, and expression of the genes encoding subunits of Paracoccus denitrificans electron transfer flavoprotein. J Biol Chem. 1993 Sep 25;268(27):20211–20217. [PubMed] [Google Scholar]
- Byron C. M., Stankovich M. T., Husain M., Davidson V. L. Unusual redox properties of electron-transfer flavoprotein from Methylophilus methylotrophus. Biochemistry. 1989 Oct 17;28(21):8582–8587. doi: 10.1021/bi00447a047. [DOI] [PubMed] [Google Scholar]
- Chen D., Swenson R. P. Cloning, sequence analysis, and expression of the genes encoding the two subunits of the methylotrophic bacterium W3A1 electron transfer flavoprotein. J Biol Chem. 1994 Dec 23;269(51):32120–32130. [PubMed] [Google Scholar]
- DuPlessis E. R., Rohlfs R. J., Hille R., Thorpe C. Electron-transferring flavoprotein from pig and the methylotrophic bacterium W3A1 contains AMP as well as FAD. Biochem Mol Biol Int. 1994 Jan;32(1):195–199. [PubMed] [Google Scholar]
- Finocchiaro G., Colombo I., Garavaglia B., Gellera C., Valdameri G., Garbuglio N., Didonato S. cDNA cloning and mitochondrial import of the beta-subunit of the human electron-transfer flavoprotein. Eur J Biochem. 1993 May 1;213(3):1003–1008. doi: 10.1111/j.1432-1033.1993.tb17847.x. [DOI] [PubMed] [Google Scholar]
- Finocchiaro G., Ito M., Ikeda Y., Tanaka K. Molecular cloning and nucleotide sequence of cDNAs encoding the alpha-subunit of human electron transfer flavoprotein. J Biol Chem. 1988 Oct 25;263(30):15773–15780. [PubMed] [Google Scholar]
- Freneaux E., Sheffield V. C., Molin L., Shires A., Rhead W. J. Glutaric acidemia type II. Heterogeneity in beta-oxidation flux, polypeptide synthesis, and complementary DNA mutations in the alpha subunit of electron transfer flavoprotein in eight patients. J Clin Invest. 1992 Nov;90(5):1679–1686. doi: 10.1172/JCI116040. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Frerman F. E. Acyl-CoA dehydrogenases, electron transfer flavoprotein and electron transfer flavoprotein dehydrogenase. Biochem Soc Trans. 1988 Jun;16(3):416–418. doi: 10.1042/bst0160416. [DOI] [PubMed] [Google Scholar]
- Frerman F. E., Goodman S. I. Deficiency of electron transfer flavoprotein or electron transfer flavoprotein:ubiquinone oxidoreductase in glutaric acidemia type II fibroblasts. Proc Natl Acad Sci U S A. 1985 Jul;82(13):4517–4520. doi: 10.1073/pnas.82.13.4517. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Frerman F. E. Reaction of electron-transfer flavoprotein ubiquinone oxidoreductase with the mitochondrial respiratory chain. Biochim Biophys Acta. 1987 Sep 10;893(2):161–169. doi: 10.1016/0005-2728(87)90035-1. [DOI] [PubMed] [Google Scholar]
- Herrick K. R., Salazar D., Goodman S. I., Finocchiaro G., Bedzyk L. A., Frerman F. E. Expression and characterization of human and chimeric human-Paracoccus denitrificans electron transfer flavoproteins. J Biol Chem. 1994 Dec 23;269(51):32239–32245. [PubMed] [Google Scholar]
- Husain M., Stankovich M. T., Fox B. G. Measurement of the oxidation-reduction potentials for one-electron and two-electron reduction of electron-transfer flavoprotein from pig liver. Biochem J. 1984 May 1;219(3):1043–1047. doi: 10.1042/bj2191043. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Izai K., Uchida Y., Orii T., Yamamoto S., Hashimoto T. Novel fatty acid beta-oxidation enzymes in rat liver mitochondria. I. Purification and properties of very-long-chain acyl-coenzyme A dehydrogenase. J Biol Chem. 1992 Jan 15;267(2):1027–1033. [PubMed] [Google Scholar]
- Loehr J. P., Goodman S. I., Frerman F. E. Glutaric acidemia type II: heterogeneity of clinical and biochemical phenotypes. Pediatr Res. 1990 Mar;27(3):311–315. doi: 10.1203/00006450-199003000-00024. [DOI] [PubMed] [Google Scholar]
- Matthews B. W. Solvent content of protein crystals. J Mol Biol. 1968 Apr 28;33(2):491–497. doi: 10.1016/0022-2836(68)90205-2. [DOI] [PubMed] [Google Scholar]
- McKean M. C., Beckmann J. D., Frerman F. E. Subunit structure of electron transfer flavoprotein. J Biol Chem. 1983 Feb 10;258(3):1866–1870. [PubMed] [Google Scholar]
- McPherson A. Current approaches to macromolecular crystallization. Eur J Biochem. 1990 Apr 20;189(1):1–23. doi: 10.1111/j.1432-1033.1990.tb15454.x. [DOI] [PubMed] [Google Scholar]
- Sato K., Nishina Y., Shiga K. Preparation of separated alpha and beta subunits of electron-transferring flavoprotein in unfolded forms and their restoration to the native holoprotein form. J Biochem. 1994 Jul;116(1):147–155. doi: 10.1093/oxfordjournals.jbchem.a124487. [DOI] [PubMed] [Google Scholar]
- Shinzawa K., Inagaki T., Ohishi N., Ichihara C., Tsukagoshi N., Udaka S., Yagi K. Molecular cloning of a cDNA for alpha-subunit of rat liver electron transfer flavoprotein. Biochem Biophys Res Commun. 1988 Aug 30;155(1):300–304. doi: 10.1016/s0006-291x(88)81084-2. [DOI] [PubMed] [Google Scholar]
- Steenkamp D. J. Cross-linking of the electron-transfer flavoprotein to electron-transfer flavoprotein-ubiquinone oxidoreductase with heterobifunctional reagents. Biochem J. 1988 Nov 1;255(3):869–876. doi: 10.1042/bj2550869. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Steenkamp D. J. Preferential cross-linking of the small subunit of the electron-transfer flavoprotein to general acyl-CoA dehydrogenase. Biochem J. 1987 Apr 15;243(2):519–524. doi: 10.1042/bj2430519. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Watmough N. J., Kiss J., Frerman F. E. Structural and redox relationships between Paracoccus denitrificans, porcine and human electron-transferring flavoproteins. Eur J Biochem. 1992 May 1;205(3):1089–1097. doi: 10.1111/j.1432-1033.1992.tb16877.x. [DOI] [PubMed] [Google Scholar]