Skip to main content
Protein Science : A Publication of the Protein Society logoLink to Protein Science : A Publication of the Protein Society
. 1995 Sep;4(9):1874–1880. doi: 10.1002/pro.5560040922

High-affinity binding of two molecules of cysteine proteinases to low-molecular-weight kininogen.

B Turk 1, V Stoka 1, I Björk 1, C Boudier 1, G Johansson 1, I Dolenc 1, A Colic 1, J G Bieth 1, V Turk 1
PMCID: PMC2143202  PMID: 8528085

Abstract

Human low-molecular-weight kininogen (LK) was shown by fluorescence titration to bind two molecules of cathepsins L and S and papain with high affinity. By contrast, binding of a second molecule of cathepsin H was much weaker. The 2:1 binding stoichiometry was confirmed by titration monitored by loss of enzyme activity and by sedimentation velocity experiments. The kinetics of binding of cathepsins L and S and papain showed the two proteinase binding sites to have association rate constants kass,1 = 10.7-24.5 x 10(6) M-1 s-1 and kass,2 = 0.83-1.4 x 10(6) M-1 s-1. Comparison of these kinetic constants with previous data for intact LK and its separated domains indicate that the faster-binding site is also the tighter-binding site and is present on domain 3, whereas the slower-binding, lower-affinity site is on domain 2. These results also indicate that there is no appreciable steric hindrance for the binding of proteinases between the two binding sites or from the kininogen light chain.

Full Text

The Full Text of this article is available as a PDF (711.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abrahamson M., Barrett A. J., Salvesen G., Grubb A. Isolation of six cysteine proteinase inhibitors from human urine. Their physicochemical and enzyme kinetic properties and concentrations in biological fluids. J Biol Chem. 1986 Aug 25;261(24):11282–11289. [PubMed] [Google Scholar]
  2. Anderson K. P., Heath E. C. The relationship between rat major acute phase protein and the kininogens. J Biol Chem. 1985 Oct 5;260(22):12065–12071. [PubMed] [Google Scholar]
  3. Auerswald E. A., Rössler D., Mentele R., Assfalg-Machleidt I. Cloning, expression and characterization of human kininogen domain 3. FEBS Lett. 1993 Apr 19;321(1):93–97. doi: 10.1016/0014-5793(93)80628-8. [DOI] [PubMed] [Google Scholar]
  4. Barrett A. J., Fritz H., Grubb A., Isemura S., Järvinen M., Katunuma N., Machleidt W., Müller-Esterl W., Sasaki M., Turk V. Nomenclature and classification of the proteins homologous with the cysteine-proteinase inhibitor chicken cystatin. Biochem J. 1986 May 15;236(1):312–312. doi: 10.1042/bj2360312. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Bieth J. G. In vivo significance of kinetic constants of protein proteinase inhibitors. Biochem Med. 1984 Dec;32(3):387–397. doi: 10.1016/0006-2944(84)90046-2. [DOI] [PubMed] [Google Scholar]
  6. Björk I., Alriksson E., Ylinenjärvi K. Kinetics of binding of chicken cystatin to papain. Biochemistry. 1989 Feb 21;28(4):1568–1573. doi: 10.1021/bi00430a022. [DOI] [PubMed] [Google Scholar]
  7. Björk I., Ylinenjärvi K. Interaction of chicken cystatin with inactivated papains. Biochem J. 1989 May 15;260(1):61–68. doi: 10.1042/bj2600061. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Blumberg S., Schechter I., Berger A. The purification of papain by affinity chromatography. Eur J Biochem. 1970 Jul;15(1):97–102. doi: 10.1111/j.1432-1033.1970.tb00981.x. [DOI] [PubMed] [Google Scholar]
  9. Bode W., Engh R., Musil D., Thiele U., Huber R., Karshikov A., Brzin J., Kos J., Turk V. The 2.0 A X-ray crystal structure of chicken egg white cystatin and its possible mode of interaction with cysteine proteinases. EMBO J. 1988 Aug;7(8):2593–2599. doi: 10.1002/j.1460-2075.1988.tb03109.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Bradford H. N., Jameson B. A., Adam A. A., Wassell R. P., Colman R. W. Contiguous binding and inhibitory sites on kininogens required for the inhibition of platelet calpain. J Biol Chem. 1993 Dec 15;268(35):26546–26551. [PubMed] [Google Scholar]
  11. DeLa Cadena R. A., Colman R. W. Structure and functions of human kininogens. Trends Pharmacol Sci. 1991 Jul;12(7):272–275. doi: 10.1016/0165-6147(91)90569-e. [DOI] [PubMed] [Google Scholar]
  12. Gounaris A. D., Brown M. A., Barrett A. J. Human plasma alpha-cysteine proteinase inhibitor. Purification by affinity chromatography, characterization and isolation of an active fragment. Biochem J. 1984 Jul 15;221(2):445–452. doi: 10.1042/bj2210445. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Higashiyama S., Ohkubo I., Ishiguro H., Kunimatsu M., Sawaki K., Sasaki M. Human high molecular weight kininogen as a thiol proteinase inhibitor: presence of the entire inhibition capacity in the native form of heavy chain. Biochemistry. 1986 Apr 8;25(7):1669–1675. doi: 10.1021/bi00355a034. [DOI] [PubMed] [Google Scholar]
  14. Higashiyama S., Ohkubo I., Ishiguro H., Sasaki M., Matsuda T., Nakamura R. Heavy chain of human high molecular weight and low molecular weight kininogens binds calcium ion. Biochemistry. 1987 Nov 17;26(23):7450–7458. doi: 10.1021/bi00397a038. [DOI] [PubMed] [Google Scholar]
  15. Jiang Y. P., Muller-Esterl W., Schmaier A. H. Domain 3 of kininogens contains a cell-binding site and a site that modifies thrombin activation of platelets. J Biol Chem. 1992 Feb 25;267(6):3712–3717. [PubMed] [Google Scholar]
  16. Kageyama R., Kitamura N., Ohkubo H., Nakanishi S. Differential expression of the multiple forms of rat prekininogen mRNAs after acute inflammation. J Biol Chem. 1985 Oct 5;260(22):12060–12064. [PubMed] [Google Scholar]
  17. Kellermann J., Lottspeich F., Henschen A., Müller-Esterl W. Completion of the primary structure of human high-molecular-mass kininogen. The amino acid sequence of the entire heavy chain and evidence for its evolution by gene triplication. Eur J Biochem. 1986 Jan 15;154(2):471–478. doi: 10.1111/j.1432-1033.1986.tb09421.x. [DOI] [PubMed] [Google Scholar]
  18. Kitamura N., Kitagawa H., Fukushima D., Takagaki Y., Miyata T., Nakanishi S. Structural organization of the human kininogen gene and a model for its evolution. J Biol Chem. 1985 Jul 15;260(14):8610–8617. [PubMed] [Google Scholar]
  19. Lindahl P., Abrahamson M., Björk I. Interaction of recombinant human cystatin C with the cysteine proteinases papain and actinidin. Biochem J. 1992 Jan 1;281(Pt 1):49–55. doi: 10.1042/bj2810049. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Lindahl P., Alriksson E., Jörnvall H., Björk I. Interaction of the cysteine proteinase inhibitor chicken cystatin with papain. Biochemistry. 1988 Jul 12;27(14):5074–5082. doi: 10.1021/bi00414a019. [DOI] [PubMed] [Google Scholar]
  21. Müller-Esterl W., Fritz H., Machleidt W., Ritonja A., Brzin J., Kotnik M., Turk V., Kellermann J., Lottspeich F. Human plasma kininogens are identical with alpha-cysteine proteinase inhibitors. Evidence from immunological, enzymological and sequence data. FEBS Lett. 1985 Mar 25;182(2):310–314. doi: 10.1016/0014-5793(85)80322-7. [DOI] [PubMed] [Google Scholar]
  22. Müller-Esterl W., Johnson D. A., Salvesen G., Barrett A. J. Human kininogens. Methods Enzymol. 1988;163:240–256. doi: 10.1016/0076-6879(88)63023-0. [DOI] [PubMed] [Google Scholar]
  23. Müller-Esterl W., Vohle-Timmermann M., Boos B., Dittman B. Purification and properties of human low molecular weight kininogen. Biochim Biophys Acta. 1982 Sep 7;706(2):145–152. doi: 10.1016/0167-4838(82)90480-0. [DOI] [PubMed] [Google Scholar]
  24. Ohkubo I., Kurachi K., Takasawa T., Shiokawa H., Sasaki M. Isolation of a human cDNA for alpha 2-thiol proteinase inhibitor and its identity with low molecular weight kininogen. Biochemistry. 1984 Nov 20;23(24):5691–5697. doi: 10.1021/bi00319a005. [DOI] [PubMed] [Google Scholar]
  25. Okamoto H., Greenbaum L. M. Isolation and structure of T-kinin. Biochem Biophys Res Commun. 1983 Apr 29;112(2):701–708. doi: 10.1016/0006-291x(83)91519-x. [DOI] [PubMed] [Google Scholar]
  26. Olson S. T., Halvorson H. R., Björk I. Quantitative characterization of the thrombin-heparin interaction. Discrimination between specific and nonspecific binding models. J Biol Chem. 1991 Apr 5;266(10):6342–6352. [PubMed] [Google Scholar]
  27. Popović T., Brzin J., Ritonja A., Svetic B., Turk V. Rapid affinity chromatographic method for the isolation of human cathepsin H. J Chromatogr. 1993 Jun 2;615(2):243–249. doi: 10.1016/0378-4347(93)80338-5. [DOI] [PubMed] [Google Scholar]
  28. Roberts D. D., Lewis S. D., Ballou D. P., Olson S. T., Shafer J. A. Reactivity of small thiolate anions and cysteine-25 in papain toward methyl methanethiosulfonate. Biochemistry. 1986 Sep 23;25(19):5595–5601. doi: 10.1021/bi00367a038. [DOI] [PubMed] [Google Scholar]
  29. Salvesen G., Parkes C., Abrahamson M., Grubb A., Barrett A. J. Human low-Mr kininogen contains three copies of a cystatin sequence that are divergent in structure and in inhibitory activity for cysteine proteinases. Biochem J. 1986 Mar 1;234(2):429–434. doi: 10.1042/bj2340429. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Sueyoshi T., Enjyoji K., Shimada T., Kato H., Iwanaga S., Bando Y., Kominami E., Katunuma N. A new function of kininogens as thiol-proteinase inhibitors: inhibition of papain and cathepsins B, H and L by bovine, rat and human plasma kininogens. FEBS Lett. 1985 Mar 11;182(1):193–195. doi: 10.1016/0014-5793(85)81182-0. [DOI] [PubMed] [Google Scholar]
  31. Sueyoshi T., Hara A., Shimada T., Kimura M., Morita T., Kato H., Iwanaga S. Molecular interaction of bovine kininogen and its derivatives with papain. J Biochem. 1988 Aug;104(2):200–206. doi: 10.1093/oxfordjournals.jbchem.a122442. [DOI] [PubMed] [Google Scholar]
  32. Takagaki Y., Kitamura N., Nakanishi S. Cloning and sequence analysis of cDNAs for human high molecular weight and low molecular weight prekininogens. Primary structures of two human prekininogens. J Biol Chem. 1985 Jul 15;260(14):8601–8609. [PubMed] [Google Scholar]
  33. Tian W. X., Tsou C. L. Determination of the rate constant of enzyme modification by measuring the substrate reaction in the presence of the modifier. Biochemistry. 1982 Mar 2;21(5):1028–1032. doi: 10.1021/bi00534a031. [DOI] [PubMed] [Google Scholar]
  34. Turk B., Colić A., Stoka V., Turk V. Kinetics of inhibition of bovine cathepsin S by bovine stefin B. FEBS Lett. 1994 Feb 14;339(1-2):155–159. doi: 10.1016/0014-5793(94)80405-2. [DOI] [PubMed] [Google Scholar]
  35. Turk B., Dolenc I., Zerovnik E., Turk D., Gubensek F., Turk V. Human cathepsin B is a metastable enzyme stabilized by specific ionic interactions associated with the active site. Biochemistry. 1994 Dec 13;33(49):14800–14806. doi: 10.1021/bi00253a019. [DOI] [PubMed] [Google Scholar]
  36. Turk B., Krizaj I., Kralj B., Dolenc I., Popovic T., Bieth J. G., Turk V. Bovine stefin C, a new member of the stefin family. J Biol Chem. 1993 Apr 5;268(10):7323–7329. [PubMed] [Google Scholar]
  37. Turk B., Ritonja A., Björk I., Stoka V., Dolenc I., Turk V. Identification of bovine stefin A, a novel protein inhibitor of cysteine proteinases. FEBS Lett. 1995 Feb 27;360(2):101–105. doi: 10.1016/0014-5793(95)00060-m. [DOI] [PubMed] [Google Scholar]
  38. Turk V., Brzin J., Longer M., Ritonja A., Eropkin M., Borchart U., Machleidt W. Protein inhibitors of cysteine proteinases. III. Amino-acid sequence of cystatin from chicken egg white. Hoppe Seylers Z Physiol Chem. 1983 Nov;364(11):1487–1496. doi: 10.1515/bchm2.1983.364.2.1487. [DOI] [PubMed] [Google Scholar]
  39. Vogel R., Assfalg-Machleidt I., Esterl A., Machleidt W., Müller-Esterl W. Proteinase-sensitive regions in the heavy chain of low molecular weight kininogen map to the inter-domain junctions. J Biol Chem. 1988 Sep 5;263(25):12661–12668. [PubMed] [Google Scholar]
  40. Wachtfogel Y. T., DeLa Cadena R. A., Kunapuli S. P., Rick L., Miller M., Schultze R. L., Altieri D. C., Edgington T. S., Colman R. W. High molecular weight kininogen binds to Mac-1 on neutrophils by its heavy chain (domain 3) and its light chain (domain 5). J Biol Chem. 1994 Jul 29;269(30):19307–19312. [PubMed] [Google Scholar]
  41. Weisel J. W., Nagaswami C., Woodhead J. L., DeLa Cadena R. A., Page J. D., Colman R. W. The shape of high molecular weight kininogen. Organization into structural domains, changes with activation, and interactions with prekallikrein, as determined by electron microscopy. J Biol Chem. 1994 Apr 1;269(13):10100–10106. [PubMed] [Google Scholar]
  42. YPHANTIS D. A. EQUILIBRIUM ULTRACENTRIFUGATION OF DILUTE SOLUTIONS. Biochemistry. 1964 Mar;3:297–317. doi: 10.1021/bi00891a003. [DOI] [PubMed] [Google Scholar]
  43. Ylinenjärvi K., Prasthofer T. W., Martin N. C., Björk I. Interaction of cysteine proteinases with recombinant kininogen domain 2, expressed in Escherichia coli. FEBS Lett. 1995 Jan 9;357(3):309–311. doi: 10.1016/0014-5793(94)01380-j. [DOI] [PubMed] [Google Scholar]
  44. Zucker S., Buttle D. J., Nicklin M. J., Barrett A. J. The proteolytic activities of chymopapain, papain, and papaya proteinase III. Biochim Biophys Acta. 1985 Apr 5;828(2):196–204. doi: 10.1016/0167-4838(85)90057-3. [DOI] [PubMed] [Google Scholar]

Articles from Protein Science : A Publication of the Protein Society are provided here courtesy of The Protein Society

RESOURCES