Abstract
We have cloned and expressed microplasminogen (mPlg), consisting of the N-terminal undecapeptide of human glu-Plg spliced to its proenzyme domain. This truncated (approximately 28 kDa) proenzyme retained the distinctive catalytic activities of the larger parent. Replacement of M residues followed by M shuffling permitted subsequent scission by site-directed chemical proteolysis (in CNBr/formic acid) without impairing any of the protein's characteristic properties. Activation of chymotrypsinogen-related zymogens occurs by limited proteolysis; the newly liberated, highly conserved N-terminus (VVGG) forms a salt bridge with an aspartyl residue immediately upstream of the active site serine. The role of both of these elements in mPlg activation was probed using protein engineering and site-directed proteolysis to alter the length and amino acid composition of the N-terminus, and to replace the aspartate. All modifications affected both Km and Kcat. The results identify some structural parameters of the N-terminus required for proenzyme activation.
Full Text
The Full Text of this article is available as a PDF (4.1 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Birktoft J. J., Blow D. M. Structure of crystalline -chymotrypsin. V. The atomic structure of tosyl- -chymotrypsin at 2 A resolution. J Mol Biol. 1972 Jul 21;68(2):187–240. doi: 10.1016/0022-2836(72)90210-0. [DOI] [PubMed] [Google Scholar]
- Bode W., Schwager P., Huber R. The transition of bovine trypsinogen to a trypsin-like state upon strong ligand binding. The refined crystal structures of the bovine trypsinogen-pancreatic trypsin inhibitor complex and of its ternary complex with Ile-Val at 1.9 A resolution. J Mol Biol. 1978 Jan 5;118(1):99–112. doi: 10.1016/0022-2836(78)90246-2. [DOI] [PubMed] [Google Scholar]
- Bode W. The transition of bovine trypsinogen to a trypsin-like state upon strong ligand binding. II. The binding of the pancreatic trypsin inhibitor and of isoleucine-valine and of sequentially related peptides to trypsinogen and to p-guanidinobenzoate-trypsinogen. J Mol Biol. 1979 Feb 5;127(4):357–374. doi: 10.1016/0022-2836(79)90227-4. [DOI] [PubMed] [Google Scholar]
- Davidson D. J., Higgins D. L., Castellino F. J. Plasminogen activator activities of equimolar complexes of streptokinase with variant recombinant plasminogens. Biochemistry. 1990 Apr 10;29(14):3585–3590. doi: 10.1021/bi00466a023. [DOI] [PubMed] [Google Scholar]
- Deutsch D. G., Mertz E. T. Plasminogen: purification from human plasma by affinity chromatography. Science. 1970 Dec 4;170(3962):1095–1096. doi: 10.1126/science.170.3962.1095. [DOI] [PubMed] [Google Scholar]
- Freer S. T., Kraut J., Robertus J. D., Wright H. T., Xuong N. H. Chymotrypsinogen: 2.5-angstrom crystal structure, comparison with alpha-chymotrypsin, and implications for zymogen activation. Biochemistry. 1970 Apr 28;9(9):1997–2009. doi: 10.1021/bi00811a022. [DOI] [PubMed] [Google Scholar]
- Friberger P., Knös M., Gustavsson S., Aurell L., Claeson G. Methods for determination of plasmin, antiplasmin and plasminogen by means of substrate S-2251. Haemostasis. 1978;7(2-3):138–145. doi: 10.1159/000214252. [DOI] [PubMed] [Google Scholar]
- Granelli-Piperno A., Reich E. A study of proteases and protease-inhibitor complexes in biological fluids. J Exp Med. 1978 Jul 1;148(1):223–234. doi: 10.1084/jem.148.1.223. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Green G. D., Shaw E. Thiobenzyl benzyloxycarbonyl-L-lysinate, substrate for a sensitive colorimetric assay for trypsin-like enzymes. Anal Biochem. 1979 Mar;93(2):223–226. doi: 10.1016/s0003-2697(79)80141-4. [DOI] [PubMed] [Google Scholar]
- Kossiakoff A. A., Chambers J. L., Kay L. M., Stroud R. M. Structure of bovine trypsinogen at 1.9 A resolution. Biochemistry. 1977 Feb 22;16(4):654–664. doi: 10.1021/bi00623a016. [DOI] [PubMed] [Google Scholar]
- Sancho J., Fersht A. R. Dissection of an enzyme by protein engineering. The N and C-terminal fragments of barnase form a native-like complex with restored enzymic activity. J Mol Biol. 1992 Apr 5;224(3):741–747. doi: 10.1016/0022-2836(92)90558-2. [DOI] [PubMed] [Google Scholar]
- Shi G. Y., Wu H. L. Isolation and characterization of microplasminogen. A low molecular weight form of plasminogen. J Biol Chem. 1988 Nov 15;263(32):17071–17075. [PubMed] [Google Scholar]
- Vialard J., Lalumière M., Vernet T., Briedis D., Alkhatib G., Henning D., Levin D., Richardson C. Synthesis of the membrane fusion and hemagglutinin proteins of measles virus, using a novel baculovirus vector containing the beta-galactosidase gene. J Virol. 1990 Jan;64(1):37–50. doi: 10.1128/jvi.64.1.37-50.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wallace C. J., Guillemette J. G., Hibiya Y., Smith M. Enhancing protein engineering capabilities by combining mutagenesis and semisynthesis. J Biol Chem. 1991 Nov 15;266(32):21355–21357. [PubMed] [Google Scholar]
- Wang J., Reich E. Structure and function of microplasminogen: II. Determinants of activation by urokinase and by the bacterial activator streptokinase. Protein Sci. 1995 Sep;4(9):1768–1779. doi: 10.1002/pro.5560040912. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Whitefleet-Smith J., Rosen E., McLinden J., Ploplis V. A., Fraser M. J., Tomlinson J. E., McLean J. W., Castellino F. J. Expression of human plasminogen cDNA in a baculovirus vector-infected insect cell system. Arch Biochem Biophys. 1989 Jun;271(2):390–399. doi: 10.1016/0003-9861(89)90288-9. [DOI] [PubMed] [Google Scholar]