Skip to main content
Protein Science : A Publication of the Protein Society logoLink to Protein Science : A Publication of the Protein Society
. 1995 Sep;4(9):1832–1843. doi: 10.1002/pro.5560040918

UME6, a negative regulator of meiosis in Saccharomyces cerevisiae, contains a C-terminal Zn2Cys6 binuclear cluster that binds the URS1 DNA sequence in a zinc-dependent manner.

S F Anderson 1, C M Steber 1, R E Esposito 1, J E Coleman 1
PMCID: PMC2143208  PMID: 8528081

Abstract

UME6 is a protein of 836 amino acids from Saccharomyces cerevisiae that acts as a repressor and activator of several early meiotic genes. UME6 contains, near the C-terminus, the amino acid sequence-771C-X2-C-X6-C-X6-C-X2-C-X6-C-, in which the spacings of the six Cys residues are identical to those found in 39 N-terminal Cys-rich DNA binding subdomains of fungal transcription factors. This sequence has been shown in GAL4 and other proteins to form a zinc binuclear cluster. In spite of the different location, the C-rich sequence, cloned and over-produced within the last 111 amino acid residues of UME6, UME6(111), forms a binuclear cluster and exhibits a Zn-dependent binding to the URS1 DNA sequence. The latter, TAGCCGCCGA, is required for the repression or activation of meiosis-specific genes by UME6. UME6(111) contains 1.8 +/- 0.4 mol Zn/mol protein and the Zn can be exchanged for Cd to yield a protein containing 1.9 +/- 0.1 mol Cd/mol protein. At 5 degrees C, 113Cd2UME6(111) shows two 113Cd NMR signals, with chemical shifts of 699 and 689 ppm, similar to those observed for 113Cd2GAL4(149). The magnitude of these chemical shifts suggests that each 113Cd nucleus is coordinated to four -S- ligands, compatible with a 113Cd2 cluster structure in which two thiolates from bridging ligands. The entire UME6 gene has been cloned and overexpressed and binds more tightly to the URS1 sequence than the zinc binuclear cluster domain alone. DNase I footprints of UME6 on URS1-containing DNA show that the protein protects the phosphodiesters of the 5'-CCGCCG-3' region within the URS1 sequence.

Full Text

The Full Text of this article is available as a PDF (6.0 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Baleja J. D., Marmorstein R., Harrison S. C., Wagner G. Solution structure of the DNA-binding domain of Cd2-GAL4 from S. cerevisiae. Nature. 1992 Apr 2;356(6368):450–453. doi: 10.1038/356450a0. [DOI] [PubMed] [Google Scholar]
  2. Bowdish K. S., Mitchell A. P. Bipartite structure of an early meiotic upstream activation sequence from Saccharomyces cerevisiae. Mol Cell Biol. 1993 Apr;13(4):2172–2181. doi: 10.1128/mcb.13.4.2172. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bram R. J., Kornberg R. D. Specific protein binding to far upstream activating sequences in polymerase II promoters. Proc Natl Acad Sci U S A. 1985 Jan;82(1):43–47. doi: 10.1073/pnas.82.1.43. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Buckingham L. E., Wang H. T., Elder R. T., McCarroll R. M., Slater M. R., Esposito R. E. Nucleotide sequence and promoter analysis of SPO13, a meiosis-specific gene of Saccharomyces cerevisiae. Proc Natl Acad Sci U S A. 1990 Dec;87(23):9406–9410. doi: 10.1073/pnas.87.23.9406. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Carey M., Kakidani H., Leatherwood J., Mostashari F., Ptashne M. An amino-terminal fragment of GAL4 binds DNA as a dimer. J Mol Biol. 1989 Oct 5;209(3):423–432. doi: 10.1016/0022-2836(89)90007-7. [DOI] [PubMed] [Google Scholar]
  6. Coleman J. E. Cadmium-113 nuclear magnetic resonance applied to metalloproteins. Methods Enzymol. 1993;227:16–43. doi: 10.1016/0076-6879(93)27004-z. [DOI] [PubMed] [Google Scholar]
  7. De Rijcke M., Seneca S., Punyammalee B., Glansdorff N., Crabeel M. Characterization of the DNA target site for the yeast ARGR regulatory complex, a sequence able to mediate repression or induction by arginine. Mol Cell Biol. 1992 Jan;12(1):68–81. doi: 10.1128/mcb.12.1.68. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Dhawale S. S., Lane A. C. Compilation of sequence-specific DNA-binding proteins implicated in transcriptional control in fungi. Nucleic Acids Res. 1993 Dec 11;21(24):5537–5546. doi: 10.1093/nar/21.24.5537. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Dower W. J., Miller J. F., Ragsdale C. W. High efficiency transformation of E. coli by high voltage electroporation. Nucleic Acids Res. 1988 Jul 11;16(13):6127–6145. doi: 10.1093/nar/16.13.6127. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Edelhoch H. Spectroscopic determination of tryptophan and tyrosine in proteins. Biochemistry. 1967 Jul;6(7):1948–1954. doi: 10.1021/bi00859a010. [DOI] [PubMed] [Google Scholar]
  11. Gadhavi P. L., Davis A. L., Povey J. F., Keeler J., Laue E. D. Polypeptide-metal cluster connectivities in Cd(II) GAL4. FEBS Lett. 1991 Apr 9;281(1-2):223–226. doi: 10.1016/0014-5793(91)80398-m. [DOI] [PubMed] [Google Scholar]
  12. Gardner K. H., Coleman J. E. 113Cd-1H heteroTOCSY: a method for determining metal-protein connectivities. J Biomol NMR. 1994 Nov;4(6):761–774. doi: 10.1007/BF00398407. [DOI] [PubMed] [Google Scholar]
  13. Giniger E., Varnum S. M., Ptashne M. Specific DNA binding of GAL4, a positive regulatory protein of yeast. Cell. 1985 Apr;40(4):767–774. doi: 10.1016/0092-8674(85)90336-8. [DOI] [PubMed] [Google Scholar]
  14. Greenfield N., Fasman G. D. Computed circular dichroism spectra for the evaluation of protein conformation. Biochemistry. 1969 Oct;8(10):4108–4116. doi: 10.1021/bi00838a031. [DOI] [PubMed] [Google Scholar]
  15. Kyte J., Doolittle R. F. A simple method for displaying the hydropathic character of a protein. J Mol Biol. 1982 May 5;157(1):105–132. doi: 10.1016/0022-2836(82)90515-0. [DOI] [PubMed] [Google Scholar]
  16. Marmorstein R., Carey M., Ptashne M., Harrison S. C. DNA recognition by GAL4: structure of a protein-DNA complex. Nature. 1992 Apr 2;356(6368):408–414. doi: 10.1038/356408a0. [DOI] [PubMed] [Google Scholar]
  17. Marmorstein R., Harrison S. C. Crystal structure of a PPR1-DNA complex: DNA recognition by proteins containing a Zn2Cys6 binuclear cluster. Genes Dev. 1994 Oct 15;8(20):2504–2512. doi: 10.1101/gad.8.20.2504. [DOI] [PubMed] [Google Scholar]
  18. Mitchell A. P., Driscoll S. E., Smith H. E. Positive control of sporulation-specific genes by the IME1 and IME2 products in Saccharomyces cerevisiae. Mol Cell Biol. 1990 May;10(5):2104–2110. doi: 10.1128/mcb.10.5.2104. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Pan T., Coleman J. E. GAL4 transcription factor is not a "zinc finger" but forms a Zn(II)2Cys6 binuclear cluster. Proc Natl Acad Sci U S A. 1990 Mar;87(6):2077–2081. doi: 10.1073/pnas.87.6.2077. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Pan T., Coleman J. E. Structure and function of the Zn(II) binding site within the DNA-binding domain of the GAL4 transcription factor. Proc Natl Acad Sci U S A. 1989 May;86(9):3145–3149. doi: 10.1073/pnas.86.9.3145. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Pan T., Halvorsen Y. D., Dickson R. C., Coleman J. E. The transcription factor LAC9 from Kluyveromyces lactis-like GAL4 from Saccharomyces cerevisiae forms a Zn(II)2Cys6 binuclear cluster. J Biol Chem. 1990 Dec 15;265(35):21427–21429. [PubMed] [Google Scholar]
  22. Park H. D., Luche R. M., Cooper T. G. The yeast UME6 gene product is required for transcriptional repression mediated by the CAR1 URS1 repressor binding site. Nucleic Acids Res. 1992 Apr 25;20(8):1909–1915. doi: 10.1093/nar/20.8.1909. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Rodgers K. K., Coleman J. E. DNA binding and bending by the transcription factors GAL4(62*) and GAL4(149*). Protein Sci. 1994 Apr;3(4):608–619. doi: 10.1002/pro.5560030409. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Rosenberg A. H., Lade B. N., Chui D. S., Lin S. W., Dunn J. J., Studier F. W. Vectors for selective expression of cloned DNAs by T7 RNA polymerase. Gene. 1987;56(1):125–135. doi: 10.1016/0378-1119(87)90165-x. [DOI] [PubMed] [Google Scholar]
  25. Saxena V. P., Wetlaufer D. B. A new basis for interpreting the circular dichroic spectra of proteins. Proc Natl Acad Sci U S A. 1971 May;68(5):969–972. doi: 10.1073/pnas.68.5.969. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Shirakawa M., Fairbrother W. J., Serikawa Y., Ohkubo T., Kyogoku Y., Wright P. E. Assignment of 1H, 15N, and 13C resonances, identification of elements of secondary structure and determination of the global fold of the DNA-binding domain of GAL4. Biochemistry. 1993 Mar 9;32(9):2144–2153. doi: 10.1021/bi00060a004. [DOI] [PubMed] [Google Scholar]
  27. Smith H. E., Mitchell A. P. A transcriptional cascade governs entry into meiosis in Saccharomyces cerevisiae. Mol Cell Biol. 1989 May;9(5):2142–2152. doi: 10.1128/mcb.9.5.2142. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Strich R., Slater M. R., Esposito R. E. Identification of negative regulatory genes that govern the expression of early meiotic genes in yeast. Proc Natl Acad Sci U S A. 1989 Dec;86(24):10018–10022. doi: 10.1073/pnas.86.24.10018. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Strich R., Surosky R. T., Steber C., Dubois E., Messenguy F., Esposito R. E. UME6 is a key regulator of nitrogen repression and meiotic development. Genes Dev. 1994 Apr 1;8(7):796–810. doi: 10.1101/gad.8.7.796. [DOI] [PubMed] [Google Scholar]
  30. Studier F. W., Moffatt B. A. Use of bacteriophage T7 RNA polymerase to direct selective high-level expression of cloned genes. J Mol Biol. 1986 May 5;189(1):113–130. doi: 10.1016/0022-2836(86)90385-2. [DOI] [PubMed] [Google Scholar]
  31. Sumrada R. A., Cooper T. G. Ubiquitous upstream repression sequences control activation of the inducible arginase gene in yeast. Proc Natl Acad Sci U S A. 1987 Jun;84(12):3997–4001. doi: 10.1073/pnas.84.12.3997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Wishart D. S., Boyko R. F., Willard L., Richards F. M., Sykes B. D. SEQSEE: a comprehensive program suite for protein sequence analysis. Comput Appl Biosci. 1994 Apr;10(2):121–132. doi: 10.1093/bioinformatics/10.2.121. [DOI] [PubMed] [Google Scholar]
  33. Zwieb C., Adhya S. Improved plasmid vectors for the analysis of protein-induced DNA bending. Methods Mol Biol. 1994;30:281–294. doi: 10.1385/0-89603-256-6:281. [DOI] [PubMed] [Google Scholar]

Articles from Protein Science : A Publication of the Protein Society are provided here courtesy of The Protein Society

RESOURCES