Skip to main content
Protein Science : A Publication of the Protein Society logoLink to Protein Science : A Publication of the Protein Society
. 1995 Sep;4(9):1914–1919. doi: 10.1002/pro.5560040925

Influence of divalent cations in protein crystallization.

S Trakhanov 1, F A Quiocho 1
PMCID: PMC2143217  PMID: 8528088

Abstract

We have tested the effect of several cations in attempts to crystallize the ligand-bound forms of the leucine/isoleucine/valine-binding protein (LIVBP) (M(r) = 36,700) and leucine-specific binding protein (LBP) (M(r) = 37,000), which act as initial periplasmic receptors for the high-affinity osmotic-shock-sensitive active transport system in bacterial cells. Success was achieved with Cd2+ promoting the most dramatic improvement in crystal size, morphology, and diffraction quality. This comes about 15 years after the ligand-free proteins were crystallized. Nine other different divalent cations were tried as additives in the crystallization of LIVBP with polyethylene glycol 8000 as precipitant, and each showed different effects on the crystal quality and morphology. Cd2+ produced large hexagonal prism crystals of LIVBP, whereas a majority of the cations resulted in less desirable needle-shaped crystals. Zn2+ gave crystals that are long rods with hexagonal cross sections, a shape intermediate between the hexagonal prism and needle forms. The concentration of Cd2+ is critical. The best crystals of the LIVBP were obtained in the presence of 1 mM CdCl2, whereas those of LBP, with trigonal prism morphology, were obtained at a much higher concentration of 100 mM. Both crystals diffract to at least 1.7 A resolution using a conventional X-ray source.

Full Text

The Full Text of this article is available as a PDF (4.9 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Kawamoto M., Kubota T., Matsunaga T., Fukuyama K., Matsubara H., Shinzawa-Itoh K., Yoshikawa S. New crystal forms and preliminary X-ray diffraction studies of mitochondrial cytochrome bc1 complex from bovine heart. J Mol Biol. 1994 Nov 25;244(2):238–241. doi: 10.1006/jmbi.1994.1722. [DOI] [PubMed] [Google Scholar]
  2. Krishna T. S., Fenyö D., Kong X. P., Gary S., Chait B. T., Burgers P., Kuriyan J. Crystallization of proliferating cell nuclear antigen (PCNA) from Saccharomyces cerevisiae. J Mol Biol. 1994 Aug 12;241(2):265–268. doi: 10.1006/jmbi.1994.1495. [DOI] [PubMed] [Google Scholar]
  3. Landick R., Oxender D. L. The complete nucleotide sequences of the Escherichia coli LIV-BP and LS-BP genes. Implications for the mechanism of high-affinity branched-chain amino acid transport. J Biol Chem. 1985 Jul 15;260(14):8257–8261. [PubMed] [Google Scholar]
  4. Lever J. E. Purification and properties of a component of histidine transport in Salmonella typhimurium. The histidine-binding protein J. J Biol Chem. 1972 Jul 10;247(13):4317–4326. [PubMed] [Google Scholar]
  5. McPherson A. Current approaches to macromolecular crystallization. Eur J Biochem. 1990 Apr 20;189(1):1–23. doi: 10.1111/j.1432-1033.1990.tb15454.x. [DOI] [PubMed] [Google Scholar]
  6. McPherson A., Koszelak S., Axelrod H., Day J., Williams R., Robinson L., McGrath M., Cascio D. An experiment regarding crystallization of soluble proteins in the presence of beta-octyl glucoside. J Biol Chem. 1986 Feb 5;261(4):1969–1975. [PubMed] [Google Scholar]
  7. Meador W. E., Quiocho F. A. Preliminary crystallographic data for a leucine, isoleucine, valine-binding protein from Escherichia coli K12. J Mol Biol. 1978 Aug 15;123(3):499–502. doi: 10.1016/0022-2836(78)90093-1. [DOI] [PubMed] [Google Scholar]
  8. Newcomer M. E., Liljas A., Eriksson U., Sundelin J., Rask L., Peterson P. A. Crystallization of and preliminary X-ray data for an intracellular vitamin A-binding protein from rat liver. J Biol Chem. 1981 Aug 10;256(15):8162–8163. [PubMed] [Google Scholar]
  9. Newcomer M. E., Liljas A., Sundelin J., Rask L., Peterson P. A. Crystallization of and preliminary X-ray data for the plasma retinol-binding protein. J Biol Chem. 1984 Apr 25;259(8):5230–5231. [PubMed] [Google Scholar]
  10. Oh B. H., Pandit J., Kang C. H., Nikaido K., Gokcen S., Ames G. F., Kim S. H. Three-dimensional structures of the periplasmic lysine/arginine/ornithine-binding protein with and without a ligand. J Biol Chem. 1993 May 25;268(15):11348–11355. [PubMed] [Google Scholar]
  11. Oxender D. L., Quay S. Binding proteins and membrane transport. Ann N Y Acad Sci. 1975 Dec 30;264:358–372. doi: 10.1111/j.1749-6632.1975.tb31496.x. [DOI] [PubMed] [Google Scholar]
  12. Penrose W. R., Nichoalds G. E., Piperno J. R., Oxender D. L. Purification and properties of a leucine-binding protein from Escherichia coli. J Biol Chem. 1968 Nov 25;243(22):5921–5928. [PubMed] [Google Scholar]
  13. Quiocho F. A. Atomic structures of periplasmic binding proteins and the high-affinity active transport systems in bacteria. Philos Trans R Soc Lond B Biol Sci. 1990 Jan 30;326(1236):341–352. doi: 10.1098/rstb.1990.0016. [DOI] [PubMed] [Google Scholar]
  14. Sack J. S., Trakhanov S. D., Tsigannik I. H., Quiocho F. A. Structure of the L-leucine-binding protein refined at 2.4 A resolution and comparison with the Leu/Ile/Val-binding protein structure. J Mol Biol. 1989 Mar 5;206(1):193–207. doi: 10.1016/0022-2836(89)90532-9. [DOI] [PubMed] [Google Scholar]
  15. Saper M. A., Quiocho F. A. Leucine, isoleucine, valine-binding protein from Escherichia coli. Structure at 3.0-A resolution and location of the binding site. J Biol Chem. 1983 Sep 25;258(18):11057–11062. [PubMed] [Google Scholar]
  16. Sharff A. J., Rodseth L. E., Quiocho F. A. Refined 1.8-A structure reveals the mode of binding of beta-cyclodextrin to the maltodextrin binding protein. Biochemistry. 1993 Oct 12;32(40):10553–10559. doi: 10.1021/bi00091a004. [DOI] [PubMed] [Google Scholar]
  17. Sharff A. J., Rodseth L. E., Spurlino J. C., Quiocho F. A. Crystallographic evidence of a large ligand-induced hinge-twist motion between the two domains of the maltodextrin binding protein involved in active transport and chemotaxis. Biochemistry. 1992 Nov 10;31(44):10657–10663. doi: 10.1021/bi00159a003. [DOI] [PubMed] [Google Scholar]
  18. Spurlino J. C., Lu G. Y., Quiocho F. A. The 2.3-A resolution structure of the maltose- or maltodextrin-binding protein, a primary receptor of bacterial active transport and chemotaxis. J Biol Chem. 1991 Mar 15;266(8):5202–5219. doi: 10.2210/pdb1mbp/pdb. [DOI] [PubMed] [Google Scholar]
  19. Tam R., Saier M. H., Jr Structural, functional, and evolutionary relationships among extracellular solute-binding receptors of bacteria. Microbiol Rev. 1993 Jun;57(2):320–346. doi: 10.1128/mr.57.2.320-346.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Trakhanov S. D., Chirgadze NYu, Yusifov E. F. Crystallization and preliminary X-ray crystallographic data of a histidine-binding protein from Escherichia coli. J Mol Biol. 1989 Jun 20;207(4):847–849. doi: 10.1016/0022-2836(89)90253-2. [DOI] [PubMed] [Google Scholar]
  21. Yao N., Trakhanov S., Quiocho F. A. Refined 1.89-A structure of the histidine-binding protein complexed with histidine and its relationship with many other active transport/chemosensory proteins. Biochemistry. 1994 Apr 26;33(16):4769–4779. doi: 10.1021/bi00182a004. [DOI] [PubMed] [Google Scholar]

Articles from Protein Science : A Publication of the Protein Society are provided here courtesy of The Protein Society

RESOURCES