Skip to main content
Protein Science : A Publication of the Protein Society logoLink to Protein Science : A Publication of the Protein Society
. 1996 Jan;5(1):114–120. doi: 10.1002/pro.5560050114

Two mutations in recombinant Hb beta F41(C7)Y, K82 (EF6)D show additive effects in decreasing oxygen affinity.

A Dumoulin 1, L Kiger 1, N Griffon 1, C Vasseur 1, I Kister 1, P Génin 1, M C Marden 1, J Pagnier 1, C Poyart 1
PMCID: PMC2143233  PMID: 8771203

Abstract

Based on the properties of two low oxygen affinity mutated hemoglobins (Hb), we have engineered a double mutant Hb (rHb beta YD) in which the beta F41Y substitution is associated with K82D. Functional studies have shown that the Hb alpha 2 beta 2(C7)F41Y exhibits a decreased oxygen affinity relative to Hb A, without a significantly increased autooxidation rate. The oxygen affinity of the natural mutant beta K82D (Hb Providence-Asp) is decreased due to the replacement of two positive charges by two negative ones at the main DPG-binding site. The functional properties of both single mutants are interesting in the view of obtaining an Hb-based blood substitute, which requires: (1) cooperative oxygen binding with an overall affinity near 30 mm Hg at half saturation, at 37 degrees C, and in the absence of 2,3 diphosphoglycerate (DPG), and (2) a slow rate of autooxidation in order to limit metHb formation. It was expected that the two mutations were at a sufficient distance (20 A) that their respective effects could combine to form low oxygen affinity tetramers. The double mutant does display additive effects resulting in a fourfold decrease in oxygen affinity; it can insure, in the absence of DPG, an oxygen delivery to the tissues similar to that of a red cell suspension in vivo at 37 degrees C. Nevertheless, the rate of autooxidation, 3.5-fold larger than that of Hb A, remains a problem.

Full Text

The Full Text of this article is available as a PDF (588.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abraham D. J., Wireko F. C., Randad R. S., Poyart C., Kister J., Bohn B., Liard J. F., Kunert M. P. Allosteric modifiers of hemoglobin: 2-[4-[[(3,5-disubstituted anilino)carbonyl]methyl]phenoxy]-2-methylpropionic acid derivatives that lower the oxygen affinity of hemoglobin in red cell suspensions, in whole blood, and in vivo in rats. Biochemistry. 1992 Sep 29;31(38):9141–9149. doi: 10.1021/bi00153a005. [DOI] [PubMed] [Google Scholar]
  2. Arnone A. X-ray diffraction study of binding of 2,3-diphosphoglycerate to human deoxyhaemoglobin. Nature. 1972 May 19;237(5351):146–149. doi: 10.1038/237146a0. [DOI] [PubMed] [Google Scholar]
  3. Bardakjian J., Leclerc L., Blouquit Y., Oules O., Rafaillat D., Arous N., Bohn B., Poyart C., Rosa J., Galacteros F. A new case of hemoglobin Providence (alpha 2 beta 2 82 (EF6) Lys----Asn or Asp) discovered in a French Caucasian family. Structural and functional studies. Hemoglobin. 1985;9(4):333–348. doi: 10.3109/03630268508997009. [DOI] [PubMed] [Google Scholar]
  4. Baudin V., Pagnier J., Lacaze N., Bihoreau M. T., Kister J., Marden M., Kiger L., Poyart C. Allosteric properties of haemoglobin beta 41 (C7) Phe-->Tyr: a stable, low-oxygen-affinity variant synthesized in Escherichia coli. Biochim Biophys Acta. 1992 Sep 23;1159(2):223–226. doi: 10.1016/0167-4838(92)90029-d. [DOI] [PubMed] [Google Scholar]
  5. Bihoreau M. T., Baudin V., Marden M., Lacaze N., Bohn B., Kister J., Schaad O., Dumoulin A., Edelstein S. J., Poyart C. Steric and hydrophobic determinants of the solubilities of recombinant sickle cell hemoglobins. Protein Sci. 1992 Jan;1(1):145–150. doi: 10.1002/pro.5560010114. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Bonaventura J., Bonaventura C., Sullivan B., Ferruzzi G., McCurdy P. R., Fox J., Moo-Penn W. F. Hemoglobin providence. Functional consequences of two alterations of the 2,3-diphosphoglycerate binding site at position beta 82. J Biol Chem. 1976 Dec 10;251(23):7563–7571. [PubMed] [Google Scholar]
  7. Brantley R. E., Jr, Smerdon S. J., Wilkinson A. J., Singleton E. W., Olson J. S. The mechanism of autooxidation of myoglobin. J Biol Chem. 1993 Apr 5;268(10):6995–7010. [PubMed] [Google Scholar]
  8. Bunn H. F. The use of hemoglobin as a blood substitute. Am J Hematol. 1993 Jan;42(1):112–117. doi: 10.1002/ajh.2830420122. [DOI] [PubMed] [Google Scholar]
  9. Fronticelli C., O'Donnell J. K., Brinigar W. S. Recombinant human hemoglobin: expression and refolding of beta-globin from Escherichia coli. J Protein Chem. 1991 Oct;10(5):495–501. doi: 10.1007/BF01025477. [DOI] [PubMed] [Google Scholar]
  10. Kister J., Poyart C., Edelstein S. J. Oxygen-organophosphate linkage in hemoglobin A. The double hump effect. Biophys J. 1987 Oct;52(4):527–535. doi: 10.1016/S0006-3495(87)83242-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. MONOD J., WYMAN J., CHANGEUX J. P. ON THE NATURE OF ALLOSTERIC TRANSITIONS: A PLAUSIBLE MODEL. J Mol Biol. 1965 May;12:88–118. doi: 10.1016/s0022-2836(65)80285-6. [DOI] [PubMed] [Google Scholar]
  12. Marden M. C., Bohn B., Kister J., Poyart C. Effectors of hemoglobin. Separation of allosteric and affinity factors. Biophys J. 1990 Mar;57(3):397–403. doi: 10.1016/S0006-3495(90)82556-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Nagai K., Thøgersen H. C. Generation of beta-globin by sequence-specific proteolysis of a hybrid protein produced in Escherichia coli. 1984 Jun 28-Jul 4Nature. 309(5971):810–812. doi: 10.1038/309810a0. [DOI] [PubMed] [Google Scholar]

Articles from Protein Science : A Publication of the Protein Society are provided here courtesy of The Protein Society

RESOURCES