Abstract
Treatment of the Class II fructose-1,6-bisphosphate aldolase of Escherichia coli with the arginine-specific alpha-dicarbonyl reagents, butanedione or phenylglyoxal, results in inactivation of the enzyme. The enzyme is protected from inactivation by the substrate, fructose 1,6-bisphosphate, or by inorganic phosphate. Modification with [7-14C] phenylglyoxal in the absence of substrate demonstrates that enzyme activity is abolished by the incorporation of approximately 2 moles of reagent per mole of enzyme. Sequence alignment of the eight known Class II FBP-aldolases shows that only one arginine residue is conserved in all the known sequences. This residue, Arg-331, was mutated to either alanine or glutamic acid. The mutant enzymes were much less susceptible to inactivation by phenylglyoxal. Measurement of the steady-state kinetic parameters revealed that mutation of Arg-331 dramatically increased the K(m) for fructose 1,6-bisphosphate. Comparatively small differences in the inhibitor constant Ki for dihydroxyacetone phosphate or its analogue, 2-phosphoglycolate, were found between the wild-type and mutant enzymes. In contrast, the mutation caused large changes in the kinetic parameters when glyceraldehyde 3-phosphate was used as an inhibitor. Kinetic analysis of the oxidation of the carbanionic aldolase-substrate intermediate of the reaction by hexacyanoferrate (III) revealed that the K(m) for dihydroxyacetone phosphate was again unaffected, whereas that for fructose 1,6-bisphosphate was dramatically increased. Taken together, these results show that Arg-331 is critically involved in the binding of fructose bisphosphate by the enzyme and demonstrate that it interacts with the C-6 phosphate group of the substrate.
Full Text
The Full Text of this article is available as a PDF (808.0 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Alefounder P. R., Baldwin S. A., Perham R. N., Short N. J. Cloning, sequence analysis and over-expression of the gene for the class II fructose 1,6-bisphosphate aldolase of Escherichia coli. Biochem J. 1989 Jan 15;257(2):529–534. doi: 10.1042/bj2570529. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1016/0003-2697(76)90527-3. [DOI] [PubMed] [Google Scholar]
- Chen J. H., Gibson J. L., McCue L. A., Tabita F. R. Identification, expression, and deduced primary structure of transketolase and other enzymes encoded within the form II CO2 fixation operon of Rhodobacter sphaeroides. J Biol Chem. 1991 Oct 25;266(30):20447–20452. [PubMed] [Google Scholar]
- Cleland W. W. Statistical analysis of enzyme kinetic data. Methods Enzymol. 1979;63:103–138. doi: 10.1016/0076-6879(79)63008-2. [DOI] [PubMed] [Google Scholar]
- Devereux J., Haeberli P., Smithies O. A comprehensive set of sequence analysis programs for the VAX. Nucleic Acids Res. 1984 Jan 11;12(1 Pt 1):387–395. doi: 10.1093/nar/12.1part1.387. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gamblin S. J., Cooper B., Millar J. R., Davies G. J., Littlechild J. A., Watson H. C. The crystal structure of human muscle aldolase at 3.0 A resolution. FEBS Lett. 1990 Mar 26;262(2):282–286. doi: 10.1016/0014-5793(90)80211-z. [DOI] [PubMed] [Google Scholar]
- Gibson J. L., Falcone D. L., Tabita F. R. Nucleotide sequence, transcriptional analysis, and expression of genes encoded within the form I CO2 fixation operon of Rhodobacter sphaeroides. J Biol Chem. 1991 Aug 5;266(22):14646–14653. [PubMed] [Google Scholar]
- Hester G., Brenner-Holzach O., Rossi F. A., Struck-Donatz M., Winterhalter K. H., Smit J. D., Piontek K. The crystal structure of fructose-1,6-bisphosphate aldolase from Drosophila melanogaster at 2.5 A resolution. FEBS Lett. 1991 Nov 4;292(1-2):237–242. doi: 10.1016/0014-5793(91)80875-4. [DOI] [PubMed] [Google Scholar]
- Hill H. A., Lobb R. R., Sharp S. L., Stokes A. M., Harris J. I., Jack R. S. Metal-replacement studies in Bacillus stearothermophilus aldolase and a comparison of the mechanisms of class I and class II aldolases. Biochem J. 1976 Mar 1;153(3):551–560. doi: 10.1042/bj1530551. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lewis D. J., Lowe G. Inhibition of fructose-1,6-bisphosphate aldolase from rabbit muscle and Bacillus stearothermophilus. Eur J Biochem. 1977 Oct 17;80(1):119–133. doi: 10.1111/j.1432-1033.1977.tb11864.x. [DOI] [PubMed] [Google Scholar]
- Littlechild J. A., Watson H. C. A data-based reaction mechanism for type I fructose bisphosphate aldolase. Trends Biochem Sci. 1993 Feb;18(2):36–39. doi: 10.1016/0968-0004(93)90048-r. [DOI] [PubMed] [Google Scholar]
- Lobb R. R., Stokes A. M., Hill H. A., Riordan J. F. Arginine as the C-1 phosphate binding site in rabbit muscle aldolase. FEBS Lett. 1975 Jun 1;54(1):70–72. doi: 10.1016/0014-5793(75)81070-2. [DOI] [PubMed] [Google Scholar]
- Mitchell C., Morris P. W., Lum L., Spiegelman G., Vary J. C. The amino acid sequence of a Bacillus subtilis phosphoprotein that matches an orfY-tsr coding sequence. Mol Microbiol. 1992 May;6(10):1345–1349. doi: 10.1111/j.1365-2958.1992.tb00855.x. [DOI] [PubMed] [Google Scholar]
- Morris A. J., Tolan D. R. Lysine-146 of rabbit muscle aldolase is essential for cleavage and condensation of the C3-C4 bond of fructose 1,6-bis(phosphate). Biochemistry. 1994 Oct 11;33(40):12291–12297. doi: 10.1021/bi00206a036. [DOI] [PubMed] [Google Scholar]
- Mutoh N., Hayashi Y. Molecular cloning and nucleotide sequencing of Schizosaccharomyces pombe homologue of the class II fructose-1,6-bisphosphate aldolase gene. Biochim Biophys Acta. 1994 Jan 4;1183(3):550–552. doi: 10.1016/0005-2728(94)90084-1. [DOI] [PubMed] [Google Scholar]
- Naismith J. H., Ferrara J. D., Bailey S., Marshall K., Dauter Z., Wilson K. S., Habash J., Harrop S. J., Berry A. J., Hunter W. N. Initiating a crystallographic study of a class II fructose-1,6-bisphosphate aldolase. J Mol Biol. 1992 Jun 20;225(4):1137–1141. doi: 10.1016/0022-2836(92)90113-x. [DOI] [PubMed] [Google Scholar]
- Packman L. C., Berry A. A reactive, surface cysteine residue of the class-II fructose-1,6-bisphosphate aldolase of Escherichia coli revealed by electrospray ionisation mass spectrometry. Eur J Biochem. 1995 Jan 15;227(1-2):510–515. doi: 10.1111/j.1432-1033.1995.tb20417.x. [DOI] [PubMed] [Google Scholar]
- RUTTER W. J. EVOLUTION OF ALDOLASE. Fed Proc. 1964 Nov-Dec;23:1248–1257. [PubMed] [Google Scholar]
- Schwelberger H. G., Kohlwein S. D., Paltauf F. Molecular cloning, primary structure and disruption of the structural gene of aldolase from Saccharomyces cerevisiae. Eur J Biochem. 1989 Mar 15;180(2):301–308. doi: 10.1111/j.1432-1033.1989.tb14648.x. [DOI] [PubMed] [Google Scholar]
- Stribling D., Perham R. N. Purification and characterization of two fructose diphosphate aldolases from Escherichia coli (Crookes' strain). Biochem J. 1973 Apr;131(4):833–841. doi: 10.1042/bj1310833. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sygusch J., Beaudry D., Allaire M. Molecular architecture of rabbit skeletal muscle aldolase at 2.7-A resolution. Proc Natl Acad Sci U S A. 1987 Nov;84(22):7846–7850. doi: 10.1073/pnas.84.22.7846. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Takahashi K. The reaction of phenylglyoxal with arginine residues in proteins. J Biol Chem. 1968 Dec 10;243(23):6171–6179. [PubMed] [Google Scholar]
- Trach K., Chapman J. W., Piggot P., LeCoq D., Hoch J. A. Complete sequence and transcriptional analysis of the spo0F region of the Bacillus subtilis chromosome. J Bacteriol. 1988 Sep;170(9):4194–4208. doi: 10.1128/jb.170.9.4194-4208.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
- von der Osten C. H., Barbas C. F., 3rd, Wong C. H., Sinskey A. J. Molecular cloning, nucleotide sequence and fine-structural analysis of the Corynebacterium glutamicum fda gene: structural comparison of C. glutamicum fructose-1,6-biphosphate aldolase to class I and class II aldolases. Mol Microbiol. 1989 Nov;3(11):1625–1637. doi: 10.1111/j.1365-2958.1989.tb00148.x. [DOI] [PubMed] [Google Scholar]