Abstract
Trypanothione reductase (TR) is an NADPH-dependent flavoprotein unique to protozoan parasites from the genera Trypanosoma and Leishmania and is an important target for the design of improved trypanocidal drugs. We present details of the structure of TR from the human pathogen Trypanosoma cruzi, the agent responsible for Chagas' disease or South American trypanosomiasis. The structure has been solved by molecular replacement, using as the starting model the structure of the enzyme from the nonpathogenic Crithidia fasciculata, and refined to an R-factor of 18.9% for 53,868 reflections with F > or = sigma F between 8.0 and 2.3 A resolution. The model comprises two subunits (968 residues), two FAD prosthetic groups, two maleate ions, and 419 water molecules. The accuracy and geometry of the enzyme model is improved with respect to the C. fasciculata enzyme model. The new structure is described and specific features of the enzyme involved in substrate interactions are compared with previous models of TR and related glutathione reductases from human and Escherichia coli. Structural differences at the edge of the active sites suggest an explanation for the differing specificities toward glutathionylspermidine disulfide.
Full Text
The Full Text of this article is available as a PDF (12.4 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Aboagye-Kwarteng T., Smith K., Fairlamb A. H. Molecular characterization of the trypanothione reductase gene from Crithidia fasciculata and Trypanosoma brucei: comparison with other flavoprotein disulphide oxidoreductases with respect to substrate specificity and catalytic mechanism. Mol Microbiol. 1992 Nov;6(21):3089–3099. doi: 10.1111/j.1365-2958.1992.tb01766.x. [DOI] [PubMed] [Google Scholar]
- Bailey S., Fairlamb A. H., Hunter W. N. Structure of trypanothione reductase from Crithidia fasciculata at 2.6 A resolution; enzyme-NADP interactions at 2.8 A resolution. Acta Crystallogr D Biol Crystallogr. 1994 Mar 1;50(Pt 2):139–154. doi: 10.1107/S0907444993011898. [DOI] [PubMed] [Google Scholar]
- Bailey S., Smith K., Fairlamb A. H., Hunter W. N. Substrate interactions between trypanothione reductase and N1-glutathionylspermidine disulphide at 0.28-nm resolution. Eur J Biochem. 1993 Apr 1;213(1):67–75. doi: 10.1111/j.1432-1033.1993.tb17734.x. [DOI] [PubMed] [Google Scholar]
- Bradley M., Bücheler U. S., Walsh C. T. Redox enzyme engineering: conversion of human glutathione reductase into a trypanothione reductase. Biochemistry. 1991 Jun 25;30(25):6124–6127. doi: 10.1021/bi00239a006. [DOI] [PubMed] [Google Scholar]
- Cunningham M. L., Zvelebil M. J., Fairlamb A. H. Mechanism of inhibition of trypanothione reductase and glutathione reductase by trivalent organic arsenicals. Eur J Biochem. 1994 Apr 1;221(1):285–295. doi: 10.1111/j.1432-1033.1994.tb18740.x. [DOI] [PubMed] [Google Scholar]
- Eggink G., Engel H., Vriend G., Terpstra P., Witholt B. Rubredoxin reductase of Pseudomonas oleovorans. Structural relationship to other flavoprotein oxidoreductases based on one NAD and two FAD fingerprints. J Mol Biol. 1990 Mar 5;212(1):135–142. doi: 10.1016/0022-2836(90)90310-I. [DOI] [PubMed] [Google Scholar]
- Fairlamb A. H., Cerami A. Metabolism and functions of trypanothione in the Kinetoplastida. Annu Rev Microbiol. 1992;46:695–729. doi: 10.1146/annurev.mi.46.100192.003403. [DOI] [PubMed] [Google Scholar]
- Field H., Cerami A., Henderson G. B. Cloning, sequencing, and demonstration of polymorphism in trypanothione reductase from Crithidia fasciculata. Mol Biochem Parasitol. 1992 Jan;50(1):47–56. doi: 10.1016/0166-6851(92)90243-d. [DOI] [PubMed] [Google Scholar]
- Ghisla S., Massey V. Mechanisms of flavoprotein-catalyzed reactions. Eur J Biochem. 1989 Apr 15;181(1):1–17. doi: 10.1111/j.1432-1033.1989.tb14688.x. [DOI] [PubMed] [Google Scholar]
- Henderson G. B., Murgolo N. J., Kuriyan J., Osapay K., Kominos D., Berry A., Scrutton N. S., Hinchliffe N. W., Perham R. N., Cerami A. Engineering the substrate specificity of glutathione reductase toward that of trypanothione reduction. Proc Natl Acad Sci U S A. 1991 Oct 1;88(19):8769–8773. doi: 10.1073/pnas.88.19.8769. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hunter K. J., Le Quesne S. A., Fairlamb A. H. Identification and biosynthesis of N1,N9-bis(glutathionyl)aminopropylcadaverine (homotrypanothione) in Trypanosoma cruzi. Eur J Biochem. 1994 Dec 15;226(3):1019–1027. doi: 10.1111/j.1432-1033.1994.t01-1-01019.x. [DOI] [PubMed] [Google Scholar]
- Hunter W. N., Bailey S., Habash J., Harrop S. J., Helliwell J. R., Aboagye-Kwarteng T., Smith K., Fairlamb A. H. Active site of trypanothione reductase. A target for rational drug design. J Mol Biol. 1992 Sep 5;227(1):322–333. doi: 10.1016/0022-2836(92)90701-k. [DOI] [PubMed] [Google Scholar]
- Hunter W. N., Smith K., Derewenda Z., Harrop S. J., Habash J., Islam M. S., Helliwell J. R., Fairlamb A. H. Initiating a crystallographic study of trypanothione reductase. J Mol Biol. 1990 Nov 20;216(2):235–237. doi: 10.1016/S0022-2836(05)80314-6. [DOI] [PubMed] [Google Scholar]
- Kabsch W., Sander C. Dictionary of protein secondary structure: pattern recognition of hydrogen-bonded and geometrical features. Biopolymers. 1983 Dec;22(12):2577–2637. doi: 10.1002/bip.360221211. [DOI] [PubMed] [Google Scholar]
- Karplus P. A., Schulz G. E. Refined structure of glutathione reductase at 1.54 A resolution. J Mol Biol. 1987 Jun 5;195(3):701–729. doi: 10.1016/0022-2836(87)90191-4. [DOI] [PubMed] [Google Scholar]
- Karplus P. A., Schulz G. E. Substrate binding and catalysis by glutathione reductase as derived from refined enzyme: substrate crystal structures at 2 A resolution. J Mol Biol. 1989 Nov 5;210(1):163–180. doi: 10.1016/0022-2836(89)90298-2. [DOI] [PubMed] [Google Scholar]
- Kjeldgaard M., Nissen P., Thirup S., Nyborg J. The crystal structure of elongation factor EF-Tu from Thermus aquaticus in the GTP conformation. Structure. 1993 Sep 15;1(1):35–50. doi: 10.1016/0969-2126(93)90007-4. [DOI] [PubMed] [Google Scholar]
- Kuriyan J., Kong X. P., Krishna T. S., Sweet R. M., Murgolo N. J., Field H., Cerami A., Henderson G. B. X-ray structure of trypanothione reductase from Crithidia fasciculata at 2.4-A resolution. Proc Natl Acad Sci U S A. 1991 Oct 1;88(19):8764–8768. doi: 10.1073/pnas.88.19.8764. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lantwin C. B., Schlichting I., Kabsch W., Pai E. F., Krauth-Siegel R. L. The structure of Trypanosoma cruzi trypanothione reductase in the oxidized and NADPH reduced state. Proteins. 1994 Feb;18(2):161–173. doi: 10.1002/prot.340180208. [DOI] [PubMed] [Google Scholar]
- Lee B., Richards F. M. The interpretation of protein structures: estimation of static accessibility. J Mol Biol. 1971 Feb 14;55(3):379–400. doi: 10.1016/0022-2836(71)90324-x. [DOI] [PubMed] [Google Scholar]
- Mittl P. R., Berry A., Scrutton N. S., Perham R. N., Schulz G. E. Anatomy of an engineered NAD-binding site. Protein Sci. 1994 Sep;3(9):1504–1514. doi: 10.1002/pro.5560030916. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mittl P. R., Schulz G. E. Structure of glutathione reductase from Escherichia coli at 1.86 A resolution: comparison with the enzyme from human erythrocytes. Protein Sci. 1994 May;3(5):799–809. doi: 10.1002/pro.5560030509. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Moore M. H., Gulbis J. M., Dodson E. J., Demple B., Moody P. C. Crystal structure of a suicidal DNA repair protein: the Ada O6-methylguanine-DNA methyltransferase from E. coli. EMBO J. 1994 Apr 1;13(7):1495–1501. doi: 10.1002/j.1460-2075.1994.tb06410.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ramachandran G. N., Sasisekharan V. Conformation of polypeptides and proteins. Adv Protein Chem. 1968;23:283–438. doi: 10.1016/s0065-3233(08)60402-7. [DOI] [PubMed] [Google Scholar]
- Rao S. T., Rossmann M. G. Comparison of super-secondary structures in proteins. J Mol Biol. 1973 May 15;76(2):241–256. doi: 10.1016/0022-2836(73)90388-4. [DOI] [PubMed] [Google Scholar]
- Schulz G. E., Schirmer R. H., Pai E. F. FAD-binding site of glutathione reductase. J Mol Biol. 1982 Sep 15;160(2):287–308. doi: 10.1016/0022-2836(82)90177-2. [DOI] [PubMed] [Google Scholar]
- Sullivan F. X., Sobolov S. B., Bradley M., Walsh C. T. Mutational analysis of parasite trypanothione reductase: acquisition of glutathione reductase activity in a triple mutant. Biochemistry. 1991 Mar 19;30(11):2761–2767. doi: 10.1021/bi00225a004. [DOI] [PubMed] [Google Scholar]
- Sullivan F. X., Walsh C. T. Cloning, sequencing, overproduction and purification of trypanothione reductase from Trypanosoma cruzi. Mol Biochem Parasitol. 1991 Jan;44(1):145–147. doi: 10.1016/0166-6851(91)90231-t. [DOI] [PubMed] [Google Scholar]
- Swindells M. B. A procedure for detecting structural domains in proteins. Protein Sci. 1995 Jan;4(1):103–112. doi: 10.1002/pro.5560040113. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Swindells M. B. A procedure for the automatic determination of hydrophobic cores in protein structures. Protein Sci. 1995 Jan;4(1):93–102. doi: 10.1002/pro.5560040112. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Verlinde C. L., Hol W. G. Structure-based drug design: progress, results and challenges. Structure. 1994 Jul 15;2(7):577–587. doi: 10.1016/s0969-2126(00)00060-5. [DOI] [PubMed] [Google Scholar]
- Zhang Y., Bailey S., Naismith J. H., Bond C. S., Habash J., McLaughlin P., Papiz M. Z., Borges A., Cunningham M., Fairlamb A. H. Trypanosoma cruzi trypanothione reductase. Crystallization, unit cell dimensions and structure solution. J Mol Biol. 1993 Aug 20;232(4):1217–1220. doi: 10.1006/jmbi.1993.1475. [DOI] [PubMed] [Google Scholar]
- de Castro S. L. The challenge of Chagas' disease chemotherapy: an update of drugs assayed against Trypanosoma cruzi. Acta Trop. 1993 Apr;53(2):83–98. doi: 10.1016/0001-706x(93)90021-3. [DOI] [PubMed] [Google Scholar]