Abstract
A water-soluble dimeric form of acetylcholinesterase from electric organ tissue of Torpedo californica was obtained by solubilization with phosphatidylinositol-specific phospholipase C of the glycophosphatidylinositol-anchored species, followed by purification by affinity chromatography. The water-soluble species, in its catalytically active native conformation, did not interact with unilamellar vesicles of dimyristoylphosphatidylcholine. We previously showed that either chemical modification or exposure to low concentrations of guanidine hydrochloride converted the native enzyme to compact, partially unfolded species with the physicochemical characteristics of the molten globule state. In the present study, it was shown that such molten globule species, whether produced by mild denaturation or by chemical modification, interacted efficiently with small unilamellar vesicles. Binding was not accompanied by significant vesicle fusion, but transient leakage occurred at the time of binding. The bound acetylcholinesterase reduced the transition temperature of the vesicles slightly, and NMR data suggested that it interacted primarily with the head-group region of the bilayer. The effects of tryptic digestion of the bound acetycholinesterase were monitored by gel electrophoresis under denaturing conditions. It was found that a single polypeptide, of mass approximately 5 kDa, remained associated with the vesicles. Sequencing revealed that this is a tryptic peptide corresponding to the sequence Glu 268-Lys 315. This polypeptide contains the longest hydrophobic sequence in the protein, Leu 274-Met 308, as identified on the basis of hydropathy plots. Inspection of the three-dimensional structure of acetylcholinesterase reveals that this hydrophobic sequence is largely devoid of tertiary structure and is localized primarily on the surface of the protein. It is suggested that this hydrophobic sequence is aligned parallel to the surface of the vesicle membrane, with nonpolar residues undergoing shallow penetration into the bilayer.
Full Text
The Full Text of this article is available as a PDF (6.3 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- BARTLETT G. R. Phosphorus assay in column chromatography. J Biol Chem. 1959 Mar;234(3):466–468. [PubMed] [Google Scholar]
- Boggs J. M., Stamp D., Moscarello M. A. Interaction of myelin basic protein with dipalmitoylphosphatidylglycerol: dependence on the lipid phase and investigation of a metastable state. Biochemistry. 1981 Oct 13;20(21):6066–6072. doi: 10.1021/bi00524a023. [DOI] [PubMed] [Google Scholar]
- Bon S., Massoulié J. Collagen-tailed and hydrophobic components of acetylcholinesterase in Torpedo marmorata electric organ. Proc Natl Acad Sci U S A. 1980 Aug;77(8):4464–4468. doi: 10.1073/pnas.77.8.4464. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Brown A. M. Functional bases for interpreting amino acid sequences of voltage-dependent K+ channels. Annu Rev Biophys Biomol Struct. 1993;22:173–198. doi: 10.1146/annurev.bb.22.060193.001133. [DOI] [PubMed] [Google Scholar]
- Bychkova V. E., Pain R. H., Ptitsyn O. B. The 'molten globule' state is involved in the translocation of proteins across membranes? FEBS Lett. 1988 Oct 10;238(2):231–234. doi: 10.1016/0014-5793(88)80485-x. [DOI] [PubMed] [Google Scholar]
- Chou P. Y., Fasman G. D. Conformational parameters for amino acids in helical, beta-sheet, and random coil regions calculated from proteins. Biochemistry. 1974 Jan 15;13(2):211–222. doi: 10.1021/bi00699a001. [DOI] [PubMed] [Google Scholar]
- Eisenberg D., Schwarz E., Komaromy M., Wall R. Analysis of membrane and surface protein sequences with the hydrophobic moment plot. J Mol Biol. 1984 Oct 15;179(1):125–142. doi: 10.1016/0022-2836(84)90309-7. [DOI] [PubMed] [Google Scholar]
- Futerman A. H., Fiorini R. M., Roth E., Low M. G., Silman I. Physicochemical behaviour and structural characteristics of membrane-bound acetylcholinesterase from Torpedo electric organ. Effect of phosphatidylinositol-specific phospholipase C. Biochem J. 1985 Mar 1;226(2):369–377. doi: 10.1042/bj2260369. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Garnier J., Osguthorpe D. J., Robson B. Analysis of the accuracy and implications of simple methods for predicting the secondary structure of globular proteins. J Mol Biol. 1978 Mar 25;120(1):97–120. doi: 10.1016/0022-2836(78)90297-8. [DOI] [PubMed] [Google Scholar]
- Gething M. J., Sambrook J. Protein folding in the cell. Nature. 1992 Jan 2;355(6355):33–45. doi: 10.1038/355033a0. [DOI] [PubMed] [Google Scholar]
- Gilbert G. E., Baleja J. D. Membrane-binding peptide from the C2 domain of factor VIII forms an amphipathic structure as determined by NMR spectroscopy. Biochemistry. 1995 Mar 7;34(9):3022–3031. doi: 10.1021/bi00009a033. [DOI] [PubMed] [Google Scholar]
- Grant C. W., McConnell H. M. Glycophorin in lipid bilayers. Proc Natl Acad Sci U S A. 1974 Dec;71(12):4653–4657. doi: 10.1073/pnas.71.12.4653. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Greenhut S. F., Bourgeois V. R., Roseman M. A. Distribution of cytochrome b5 between small and large unilamellar phospholipid vesicles. J Biol Chem. 1986 Mar 15;261(8):3670–3675. [PubMed] [Google Scholar]
- Griko Y. V., Gittis A., Lattman E. E., Privalov P. L. Residual structure in a staphylococcal nuclease fragment. Is it a molten globule and is its unfolding a first-order phase transition? J Mol Biol. 1994 Oct 14;243(1):93–99. doi: 10.1006/jmbi.1994.1632. [DOI] [PubMed] [Google Scholar]
- Hamilton J. A., Small D. M. Solubilization and localization of triolein in phosphatidylcholine bilayers: a 13C NMR study. Proc Natl Acad Sci U S A. 1981 Nov;78(11):6878–6882. doi: 10.1073/pnas.78.11.6878. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hubbell W. L., McConnell H. M. Molecular motion in spin-labeled phospholipids and membranes. J Am Chem Soc. 1971 Jan 27;93(2):314–326. doi: 10.1021/ja00731a005. [DOI] [PubMed] [Google Scholar]
- Humphries G. K., McConnell H. M. Immune lysis of liposomes and erythrocyte ghosts loaded with spin label. Proc Natl Acad Sci U S A. 1974 May;71(5):1691–1694. doi: 10.1073/pnas.71.5.1691. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kam Z., Borochov N., Eisenberg H. Dependence of laser light scattering of DNA on NaCl concentration. Biopolymers. 1981 Dec;20(12):2671–2690. doi: 10.1002/bip.1981.360201213. [DOI] [PubMed] [Google Scholar]
- Kim J., Kim H. Fusion of phospholipid vesicles induced by alpha-lactalbumin at acidic pH. Biochemistry. 1986 Dec 2;25(24):7867–7874. doi: 10.1021/bi00372a012. [DOI] [PubMed] [Google Scholar]
- Kreimer D. I., Dolginova E. A., Raves M., Sussman J. L., Silman I., Weiner L. A metastable state of Torpedo californica acetylcholinesterase generated by modification with organomercurials. Biochemistry. 1994 Dec 6;33(48):14407–14418. doi: 10.1021/bi00252a006. [DOI] [PubMed] [Google Scholar]
- Kuwajima K. The molten globule state as a clue for understanding the folding and cooperativity of globular-protein structure. Proteins. 1989;6(2):87–103. doi: 10.1002/prot.340060202. [DOI] [PubMed] [Google Scholar]
- Kyte J., Doolittle R. F. A simple method for displaying the hydropathic character of a protein. J Mol Biol. 1982 May 5;157(1):105–132. doi: 10.1016/0022-2836(82)90515-0. [DOI] [PubMed] [Google Scholar]
- Ladokhin A. S., Tretyachenko-Ladokhina V. G., Holloway P. W., Wang L., Steggles A. W. Biophysical studies of cytochromes B5 with amino acid substitutions in the membrane-binding domain. Biophys J. 1992 Apr;62(1):79–81. doi: 10.1016/S0006-3495(92)81786-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lemmon M. A., Engelman D. M. Specificity and promiscuity in membrane helix interactions. Q Rev Biophys. 1994 May;27(2):157–218. doi: 10.1017/s0033583500004522. [DOI] [PubMed] [Google Scholar]
- Low M. G. The glycosyl-phosphatidylinositol anchor of membrane proteins. Biochim Biophys Acta. 1989 Dec 6;988(3):427–454. doi: 10.1016/0304-4157(89)90014-2. [DOI] [PubMed] [Google Scholar]
- Mehlert A., Varon L., Silman I., Homans S. W., Ferguson M. A. Structure of the glycosyl-phosphatidylinositol membrane anchor of acetylcholinesterase from the electric organ of the electric-fish, Torpedo californica. Biochem J. 1993 Dec 1;296(Pt 2):473–479. doi: 10.1042/bj2960473. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mel S. F., Stroud R. M. Colicin Ia inserts into negatively charged membranes at low pH with a tertiary but little secondary structural change. Biochemistry. 1993 Mar 2;32(8):2082–2089. doi: 10.1021/bi00059a028. [DOI] [PubMed] [Google Scholar]
- Muga A., Gonzalez-Manas J. M., Lakey J. H., Pattus F., Surewicz W. K. pH-dependent stability and membrane interaction of the pore-forming domain of colicin A. J Biol Chem. 1993 Jan 25;268(3):1553–1557. [PubMed] [Google Scholar]
- Ozols J. Structure of cytochrome b5 and its topology in the microsomal membrane. Biochim Biophys Acta. 1989 Jul 27;997(1-2):121–130. doi: 10.1016/0167-4838(89)90143-x. [DOI] [PubMed] [Google Scholar]
- Papahadjopoulos D., Miller N. Phospholipid model membranes. I. Structural characteristics of hydrated liquid crystals. Biochim Biophys Acta. 1967 Sep 9;135(4):624–638. doi: 10.1016/0005-2736(67)90094-6. [DOI] [PubMed] [Google Scholar]
- Picot D., Loll P. J., Garavito R. M. The X-ray crystal structure of the membrane protein prostaglandin H2 synthase-1. Nature. 1994 Jan 20;367(6460):243–249. doi: 10.1038/367243a0. [DOI] [PubMed] [Google Scholar]
- Pouny Y., Rapaport D., Mor A., Nicolas P., Shai Y. Interaction of antimicrobial dermaseptin and its fluorescently labeled analogues with phospholipid membranes. Biochemistry. 1992 Dec 15;31(49):12416–12423. doi: 10.1021/bi00164a017. [DOI] [PubMed] [Google Scholar]
- Schägger H., von Jagow G. Tricine-sodium dodecyl sulfate-polyacrylamide gel electrophoresis for the separation of proteins in the range from 1 to 100 kDa. Anal Biochem. 1987 Nov 1;166(2):368–379. doi: 10.1016/0003-2697(87)90587-2. [DOI] [PubMed] [Google Scholar]
- Semisotnov G. V., Rodionova N. A., Razgulyaev O. I., Uversky V. N., Gripas' A. F., Gilmanshin R. I. Study of the "molten globule" intermediate state in protein folding by a hydrophobic fluorescent probe. Biopolymers. 1991 Jan;31(1):119–128. doi: 10.1002/bip.360310111. [DOI] [PubMed] [Google Scholar]
- Shin Y. K., Levinthal C., Levinthal F., Hubbell W. L. Colicin E1 binding to membranes: time-resolved studies of spin-labeled mutants. Science. 1993 Feb 12;259(5097):960–963. doi: 10.1126/science.8382373. [DOI] [PubMed] [Google Scholar]
- Silversmith R. E., Nelsestuen G. L. Interaction of complement proteins C5b-6 and C5b-7 with phospholipid vesicles: effects of phospholipid structural features. Biochemistry. 1986 Nov 18;25(23):7717–7725. doi: 10.1021/bi00371a065. [DOI] [PubMed] [Google Scholar]
- Surrey T., Jähnig F. Refolding and oriented insertion of a membrane protein into a lipid bilayer. Proc Natl Acad Sci U S A. 1992 Aug 15;89(16):7457–7461. doi: 10.1073/pnas.89.16.7457. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sussman J. L., Harel M., Frolow F., Oefner C., Goldman A., Toker L., Silman I. Atomic structure of acetylcholinesterase from Torpedo californica: a prototypic acetylcholine-binding protein. Science. 1991 Aug 23;253(5022):872–879. doi: 10.1126/science.1678899. [DOI] [PubMed] [Google Scholar]
- Sussman J. L., Harel M., Frolow F., Varon L., Toker L., Futerman A. H., Silman I. Purification and crystallization of a dimeric form of acetylcholinesterase from Torpedo californica subsequent to solubilization with phosphatidylinositol-specific phospholipase C. J Mol Biol. 1988 Oct 5;203(3):821–823. doi: 10.1016/0022-2836(88)90213-6. [DOI] [PubMed] [Google Scholar]
- Ulbrandt N. D., London E., Oliver D. B. Deep penetration of a portion of Escherichia coli SecA protein into model membranes is promoted by anionic phospholipids and by partial unfolding. J Biol Chem. 1992 Jul 25;267(21):15184–15192. [PubMed] [Google Scholar]
- Viratelle O. M., Bernhard S. A. Major component of acetylcholinesterase in Torpedo electroplax is not basal lamina associated. Biochemistry. 1980 Oct 28;19(22):4999–5007. doi: 10.1021/bi00563a011. [DOI] [PubMed] [Google Scholar]
- Weiner L., Kreimer D., Roth E., Silman I. Oxidative stress transforms acetylcholinesterase to a molten-globule-like state. Biochem Biophys Res Commun. 1994 Feb 15;198(3):915–922. doi: 10.1006/bbrc.1994.1130. [DOI] [PubMed] [Google Scholar]
- Weinstein J. N., Klausner R. D., Innerarity T., Ralston E., Blumenthal R. Phase transition release, a new approach to the interaction of proteins with lipid vesicles. Application to lipoproteins. Biochim Biophys Acta. 1981 Oct 2;647(2):270–284. doi: 10.1016/0005-2736(81)90255-8. [DOI] [PubMed] [Google Scholar]
- Weiss M. S., Abele U., Weckesser J., Welte W., Schiltz E., Schulz G. E. Molecular architecture and electrostatic properties of a bacterial porin. Science. 1991 Dec 13;254(5038):1627–1630. doi: 10.1126/science.1721242. [DOI] [PubMed] [Google Scholar]
- Wessel D., Flügge U. I. A method for the quantitative recovery of protein in dilute solution in the presence of detergents and lipids. Anal Biochem. 1984 Apr;138(1):141–143. doi: 10.1016/0003-2697(84)90782-6. [DOI] [PubMed] [Google Scholar]
- Witzemann V. Characterization of multiple forms of acetylcholinesterase in electric organ of Torpedo marmorata. Neurosci Lett. 1980 Dec;20(3):277–282. doi: 10.1016/0304-3940(80)90160-3. [DOI] [PubMed] [Google Scholar]
- Zardeneta G., Horowitz P. M. Analysis of the perturbation of phospholipid model membranes by rhodanese and its presequence. J Biol Chem. 1992 Dec 5;267(34):24193–24198. [PubMed] [Google Scholar]
- van der Goot F. G., González-Mañas J. M., Lakey J. H., Pattus F. A 'molten-globule' membrane-insertion intermediate of the pore-forming domain of colicin A. Nature. 1991 Dec 5;354(6352):408–410. doi: 10.1038/354408a0. [DOI] [PubMed] [Google Scholar]
