Skip to main content
Protein Science : A Publication of the Protein Society logoLink to Protein Science : A Publication of the Protein Society
. 1996 Oct;5(10):2089–2094. doi: 10.1002/pro.5560051015

In vitro renaturation of bovine beta-lactoglobulin A leads to a biologically active but incompletely refolded state.

V Subramaniam 1, D G Steel 1, A Gafni 1
PMCID: PMC2143262  PMID: 8897609

Abstract

When bovine beta-lactoglobulin (beta-LG) was refolded after extensive denaturation in 4.8 M guanidine hydrochloride (GuHCl), the functional activity of the protein, retinol binding, as measured by the enhancement of this ligand's fluorescence, was completely recovered. In contrast, the room-temperature tryptophan phosphorescence lifetime of the refolded protein, a local measure of the residue environment, was approximately 10 ms, significantly shorter than the phosphorescence lifetime of the untreated native protein (approximately 20 ms). The lability of the freshly refolded protein, as monitored by following the time course of its unfolding when incubated in 2.5 M GuHCl through the change in fluorescence intensity at 385 nm, was also determined and found to be increased significantly relative to untreated native protein. In contrast to the long term postactivation conformational changes detected previously in Escherichia coli alkaline phosphatase (Subramaniam V, Bergenhem NCH, Gafni A, Steel DG, 1995, Biochemistry 34:1133-1136), we found no changes in either the lability or phosphorescence decays of beta-LG during a period of 24 h. Our results are in agreement with the report by Hattori et al. (1993, J Biol Chem 268:22414-22419), using conformation-specific monoclonal antibodies to recognize native-like structure, that long-term changes occur in the protein conformation, compared with the native structure, on refolding.

Full Text

The Full Text of this article is available as a PDF (1.6 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. ASCHAFFENBURG R., DREWRY J. Improved method for the preparation of crystalline beta-lactoglobulin and alpha-lactalbumin from cow's milk. Biochem J. 1957 Feb;65(2):273–277. doi: 10.1042/bj0650273. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Baker D., Sohl J. L., Agard D. A. A protein-folding reaction under kinetic control. Nature. 1992 Mar 19;356(6366):263–265. doi: 10.1038/356263a0. [DOI] [PubMed] [Google Scholar]
  3. Bent D. V., Hayon E. Excited state chemistry of aromatic amino acids and related peptides. III. Tryptophan. J Am Chem Soc. 1975 May 14;97(10):2612–2619. doi: 10.1021/ja00843a004. [DOI] [PubMed] [Google Scholar]
  4. Brandts J. F., Halvorson H. R., Brennan M. Consideration of the Possibility that the slow step in protein denaturation reactions is due to cis-trans isomerism of proline residues. Biochemistry. 1975 Nov 4;14(22):4953–4963. doi: 10.1021/bi00693a026. [DOI] [PubMed] [Google Scholar]
  5. Bryngelson J. D., Onuchic J. N., Socci N. D., Wolynes P. G. Funnels, pathways, and the energy landscape of protein folding: a synthesis. Proteins. 1995 Mar;21(3):167–195. doi: 10.1002/prot.340210302. [DOI] [PubMed] [Google Scholar]
  6. Clark A. C., Sinclair J. F., Baldwin T. O. Folding of bacterial luciferase involves a non-native heterodimeric intermediate in equilibrium with the native enzyme and the unfolded subunits. J Biol Chem. 1993 May 25;268(15):10773–10779. [PubMed] [Google Scholar]
  7. Flower D. R., North A. C., Attwood T. K. Structure and sequence relationships in the lipocalins and related proteins. Protein Sci. 1993 May;2(5):753–761. doi: 10.1002/pro.5560020507. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Frauenfelder H., Sligar S. G., Wolynes P. G. The energy landscapes and motions of proteins. Science. 1991 Dec 13;254(5038):1598–1603. doi: 10.1126/science.1749933. [DOI] [PubMed] [Google Scholar]
  9. Fugate R. D., Song P. S. Spectroscopic characterization of beta-lactoglobulin-retinol complex. Biochim Biophys Acta. 1980 Sep 23;625(1):28–42. doi: 10.1016/0005-2795(80)90105-1. [DOI] [PubMed] [Google Scholar]
  10. Futterman S., Heller J. The enhancement of fluorescence and the decreased susceptibility to enzymatic oxidation of retinol complexed with bovine serum albumin, -lactoglobulin, and the retinol-binding protein of human plasma. J Biol Chem. 1972 Aug 25;247(16):5168–5172. [PubMed] [Google Scholar]
  11. Hattori M., Ametani A., Katakura Y., Shimizu M., Kaminogawa S. Unfolding/refolding studies on bovine beta-lactoglobulin with monoclonal antibodies as probes. Does a renatured protein completely refold? J Biol Chem. 1993 Oct 25;268(30):22414–22419. [PubMed] [Google Scholar]
  12. Katakura Y., Totsuka M., Ametani A., Kaminogawa S. Tryptophan-19 of beta-lactoglobulin, the only residue completely conserved in the lipocalin superfamily, is not essential for binding retinol, but relevant to stabilizing bound retinol and maintaining its structure. Biochim Biophys Acta. 1994 Jul 20;1207(1):58–67. doi: 10.1016/0167-4838(94)90051-5. [DOI] [PubMed] [Google Scholar]
  13. Kuwajima K., Yamaya H., Miwa S., Sugai S., Nagamura T. Rapid formation of secondary structure framework in protein folding studied by stopped-flow circular dichroism. FEBS Lett. 1987 Aug 31;221(1):115–118. doi: 10.1016/0014-5793(87)80363-0. [DOI] [PubMed] [Google Scholar]
  14. Mersol J. V., Steel D. G., Gafni A. Detection of intermediate protein conformations by room temperature tryptophan phosphorescence spectroscopy during denaturation of Escherichia coli alkaline phosphatase. Biophys Chem. 1993 Dec;48(2):281–291. doi: 10.1016/0301-4622(93)85015-a. [DOI] [PubMed] [Google Scholar]
  15. North A. C. Three-dimensional arrangement of conserved amino acid residues in a superfamily of specific ligand-binding proteins. Int J Biol Macromol. 1989 Feb;11(1):56–58. doi: 10.1016/0141-8130(89)90041-x. [DOI] [PubMed] [Google Scholar]
  16. Papiz M. Z., Sawyer L., Eliopoulos E. E., North A. C., Findlay J. B., Sivaprasadarao R., Jones T. A., Newcomer M. E., Kraulis P. J. The structure of beta-lactoglobulin and its similarity to plasma retinol-binding protein. 1986 Nov 27-Dec 3Nature. 324(6095):383–385. doi: 10.1038/324383a0. [DOI] [PubMed] [Google Scholar]
  17. Rietveld A. W., Ferreira S. T. Deterministic pressure dissociation and unfolding of triose phosphate isomerase: persistent heterogeneity of a protein dimer. Biochemistry. 1996 Jun 18;35(24):7743–7751. doi: 10.1021/bi952118b. [DOI] [PubMed] [Google Scholar]
  18. Sancho E., Declerck P. J., Price N. C., Kelly S. M., Booth N. A. Conformational studies on plasminogen activator inhibitor (PAI-1) in active, latent, substrate, and cleaved forms. Biochemistry. 1995 Jan 24;34(3):1064–1069. doi: 10.1021/bi00003a042. [DOI] [PubMed] [Google Scholar]
  19. Shiraki K., Nishikawa K., Goto Y. Trifluoroethanol-induced stabilization of the alpha-helical structure of beta-lactoglobulin: implication for non-hierarchical protein folding. J Mol Biol. 1995 Jan 13;245(2):180–194. doi: 10.1006/jmbi.1994.0015. [DOI] [PubMed] [Google Scholar]
  20. Thomas P. J., Qu B. H., Pedersen P. L. Defective protein folding as a basis of human disease. Trends Biochem Sci. 1995 Nov;20(11):456–459. doi: 10.1016/s0968-0004(00)89100-8. [DOI] [PubMed] [Google Scholar]
  21. Vanderkooi J. M., Calhoun D. B., Englander S. W. On the prevalence of room-temperature protein phosphorescence. Science. 1987 May 1;236(4801):568–569. doi: 10.1126/science.3576185. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Wolynes P. G., Onuchic J. N., Thirumalai D. Navigating the folding routes. Science. 1995 Mar 17;267(5204):1619–1620. doi: 10.1126/science.7886447. [DOI] [PubMed] [Google Scholar]

Articles from Protein Science : A Publication of the Protein Society are provided here courtesy of The Protein Society

RESOURCES