Skip to main content
Protein Science : A Publication of the Protein Society logoLink to Protein Science : A Publication of the Protein Society
. 1996 Oct;5(10):2009–2019. doi: 10.1002/pro.5560051007

Surface point mutations that significantly alter the structure and stability of a protein's denatured state.

C K Smith 1, Z Bu 1, K S Anderson 1, J M Sturtevant 1, D M Engelman 1, L Regan 1
PMCID: PMC2143264  PMID: 8897601

Abstract

Significantly different m values (1.9-2.7 kcal mol-1 M-1) were observed for point mutations at a single, solvent-exposed site (T53) in a variant of the B1 domain of streptococcal Protein G using guanidine hydrochloride (GuHCl) as a denaturant. This report focuses on elucidating the energetic and structural implications of these m-value differences in two Protein G mutants, containing Ala and Thr at position 53. These two proteins are representative of the high (m+) and low (m-) m-value mutants studied. Differential scanning calorimetry revealed no evidence of equilibrium intermediates. A comparison of GuHCl denaturation monitored by fluorescence and circular dichroism showed that secondary and tertiary structure denatured concomitantly. The rates of folding (286 S-1 for the m+ mutant and 952 S-1 for the m- mutant) and the rates of unfolding (11 S-1 for m+ mutant and 3 S-1 for the m- mutant) were significantly different, as determined by stopped-flow fluorescence. The relative solvation free energies of the transition states were identical for the two proteins (alpha ++ = 0.3). Small-angle X-ray scattering showed that the radius of gyration of the denatured state (Rgd) of the m+ mutant did not change with increasing denaturant concentrations (Rgd approximately 23 A); whereas, the Rgd of the m- mutant increased from approximately 17 A to 23 A with increasing denaturant concentration. The results indicate that the mutations exert significant effects in both the native and GuHCl-induced denatured state of these two proteins.

Full Text

The Full Text of this article is available as a PDF (3.2 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alexander P., Fahnestock S., Lee T., Orban J., Bryan P. Thermodynamic analysis of the folding of the streptococcal protein G IgG-binding domains B1 and B2: why small proteins tend to have high denaturation temperatures. Biochemistry. 1992 Apr 14;31(14):3597–3603. doi: 10.1021/bi00129a007. [DOI] [PubMed] [Google Scholar]
  2. Arcus V. L., Vuilleumier S., Freund S. M., Bycroft M., Fersht A. R. A comparison of the pH, urea, and temperature-denatured states of barnase by heteronuclear NMR: implications for the initiation of protein folding. J Mol Biol. 1995 Nov 24;254(2):305–321. doi: 10.1006/jmbi.1995.0618. [DOI] [PubMed] [Google Scholar]
  3. Bai Y., Englander S. W. Hydrogen bond strength and beta-sheet propensities: the role of a side chain blocking effect. Proteins. 1994 Mar;18(3):262–266. doi: 10.1002/prot.340180307. [DOI] [PubMed] [Google Scholar]
  4. Beasty A. M., Hurle M. R., Manz J. T., Stackhouse T., Onuffer J. J., Matthews C. R. Effects of the phenylalanine-22----leucine, glutamic acid-49----methionine, glycine-234----aspartic acid, and glycine-234----lysine mutations on the folding and stability of the alpha subunit of tryptophan synthase from Escherichia coli. Biochemistry. 1986 May 20;25(10):2965–2974. doi: 10.1021/bi00358a035. [DOI] [PubMed] [Google Scholar]
  5. Betz S. F., Pielak G. J. Introduction of a disulfide bond into cytochrome c stabilizes a compact denatured state. Biochemistry. 1992 Dec 15;31(49):12337–12344. doi: 10.1021/bi00164a007. [DOI] [PubMed] [Google Scholar]
  6. Bowler B. E., May K., Zaragoza T., York P., Dong A., Caughey W. S. Destabilizing effects of replacing a surface lysine of cytochrome c with aromatic amino acids: implications for the denatured state. Biochemistry. 1993 Jan 12;32(1):183–190. doi: 10.1021/bi00052a024. [DOI] [PubMed] [Google Scholar]
  7. Buck M., Radford S. E., Dobson C. M. Amide hydrogen exchange in a highly denatured state. Hen egg-white lysozyme in urea. J Mol Biol. 1994 Apr 1;237(3):247–254. doi: 10.1006/jmbi.1994.1228. [DOI] [PubMed] [Google Scholar]
  8. Carra J. H., Privalov P. L. Energetics of denaturation and m values of staphylococcal nuclease mutants. Biochemistry. 1995 Feb 14;34(6):2034–2041. doi: 10.1021/bi00006a025. [DOI] [PubMed] [Google Scholar]
  9. Chen B. L., Baase W. A., Nicholson H., Schellman J. A. Folding kinetics of T4 lysozyme and nine mutants at 12 degrees C. Biochemistry. 1992 Feb 11;31(5):1464–1476. doi: 10.1021/bi00120a025. [DOI] [PubMed] [Google Scholar]
  10. Flanagan J. M., Kataoka M., Fujisawa T., Engelman D. M. Mutations can cause large changes in the conformation of a denatured protein. Biochemistry. 1993 Oct 5;32(39):10359–10370. doi: 10.1021/bi00090a011. [DOI] [PubMed] [Google Scholar]
  11. Flanagan J. M., Kataoka M., Shortle D., Engelman D. M. Truncated staphylococcal nuclease is compact but disordered. Proc Natl Acad Sci U S A. 1992 Jan 15;89(2):748–752. doi: 10.1073/pnas.89.2.748. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Gorovits B. M., Seale J. W., Horowitz P. M. Residual structure in urea-denatured chaperonin GroEL. Biochemistry. 1995 Oct 24;34(42):13928–13933. doi: 10.1021/bi00042a026. [DOI] [PubMed] [Google Scholar]
  13. Green S. M., Meeker A. K., Shortle D. Contributions of the polar, uncharged amino acids to the stability of staphylococcal nuclease: evidence for mutational effects on the free energy of the denatured state. Biochemistry. 1992 Jun 30;31(25):5717–5728. doi: 10.1021/bi00140a005. [DOI] [PubMed] [Google Scholar]
  14. Gronenborn A. M., Filpula D. R., Essig N. Z., Achari A., Whitlow M., Wingfield P. T., Clore G. M. A novel, highly stable fold of the immunoglobulin binding domain of streptococcal protein G. Science. 1991 Aug 9;253(5020):657–661. doi: 10.1126/science.1871600. [DOI] [PubMed] [Google Scholar]
  15. Hamlin R. Multiwire area X-ray diffractometers. Methods Enzymol. 1985;114:416–452. doi: 10.1016/0076-6879(85)14029-2. [DOI] [PubMed] [Google Scholar]
  16. Kamatari Y. O., Konno T., Kataoka M., Akasaka K. The methanol-induced globular and expanded denatured states of cytochrome c: a study by CD fluorescence, NMR and small-angle X-ray scattering. J Mol Biol. 1996 Jun 14;259(3):512–523. doi: 10.1006/jmbi.1996.0336. [DOI] [PubMed] [Google Scholar]
  17. Makhatadze G. I., Privalov P. L. Protein interactions with urea and guanidinium chloride. A calorimetric study. J Mol Biol. 1992 Jul 20;226(2):491–505. doi: 10.1016/0022-2836(92)90963-k. [DOI] [PubMed] [Google Scholar]
  18. Matthews C. R., Hurle M. R. Mutant sequences as probes of protein folding mechanisms. Bioessays. 1987 Jun;6(6):254–257. doi: 10.1002/bies.950060603. [DOI] [PubMed] [Google Scholar]
  19. Monera O. D., Kay C. M., Hodges R. S. Protein denaturation with guanidine hydrochloride or urea provides a different estimate of stability depending on the contributions of electrostatic interactions. Protein Sci. 1994 Nov;3(11):1984–1991. doi: 10.1002/pro.5560031110. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Myers J. K., Pace C. N., Scholtz J. M. Denaturant m values and heat capacity changes: relation to changes in accessible surface areas of protein unfolding. Protein Sci. 1995 Oct;4(10):2138–2148. doi: 10.1002/pro.5560041020. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Neri D., Billeter M., Wider G., Wüthrich K. NMR determination of residual structure in a urea-denatured protein, the 434-repressor. Science. 1992 Sep 11;257(5076):1559–1563. doi: 10.1126/science.1523410. [DOI] [PubMed] [Google Scholar]
  22. Pace C. N., Grimsley G. R., Thomson J. A., Barnett B. J. Conformational stability and activity of ribonuclease T1 with zero, one, and two intact disulfide bonds. J Biol Chem. 1988 Aug 25;263(24):11820–11825. [PubMed] [Google Scholar]
  23. Pace C. N., Vanderburg K. E. Determining globular protein stability: guanidine hydrochloride denaturation of myoglobin. Biochemistry. 1979 Jan 23;18(2):288–292. doi: 10.1021/bi00569a008. [DOI] [PubMed] [Google Scholar]
  24. Regan L., Rockwell A., Wasserman Z., DeGrado W. Disulfide crosslinks to probe the structure and flexibility of a designed four-helix bundle protein. Protein Sci. 1994 Dec;3(12):2419–2427. doi: 10.1002/pro.5560031225. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Santoro M. M., Bolen D. W. Unfolding free energy changes determined by the linear extrapolation method. 1. Unfolding of phenylmethanesulfonyl alpha-chymotrypsin using different denaturants. Biochemistry. 1988 Oct 18;27(21):8063–8068. doi: 10.1021/bi00421a014. [DOI] [PubMed] [Google Scholar]
  26. Shortle D., Meeker A. K. Residual structure in large fragments of staphylococcal nuclease: effects of amino acid substitutions. Biochemistry. 1989 Feb 7;28(3):936–944. doi: 10.1021/bi00429a003. [DOI] [PubMed] [Google Scholar]
  27. Shortle D. Mutational studies of protein structures and their stabilities. Q Rev Biophys. 1992 May;25(2):205–250. doi: 10.1017/s0033583500004674. [DOI] [PubMed] [Google Scholar]
  28. Shortle D., Stites W. E., Meeker A. K. Contributions of the large hydrophobic amino acids to the stability of staphylococcal nuclease. Biochemistry. 1990 Sep 4;29(35):8033–8041. doi: 10.1021/bi00487a007. [DOI] [PubMed] [Google Scholar]
  29. Smith C. K., Regan L. Guidelines for protein design: the energetics of beta sheet side chain interactions. Science. 1995 Nov 10;270(5238):980–982. doi: 10.1126/science.270.5238.980. [DOI] [PubMed] [Google Scholar]
  30. Smith C. K., Withka J. M., Regan L. A thermodynamic scale for the beta-sheet forming tendencies of the amino acids. Biochemistry. 1994 May 10;33(18):5510–5517. doi: 10.1021/bi00184a020. [DOI] [PubMed] [Google Scholar]
  31. Sosnick T. R., Trewhella J. Denatured states of ribonuclease A have compact dimensions and residual secondary structure. Biochemistry. 1992 Sep 8;31(35):8329–8335. doi: 10.1021/bi00150a029. [DOI] [PubMed] [Google Scholar]
  32. Tamura Y., Gekko K. Compactness of thermally and chemically denatured ribonuclease A as revealed by volume and compressibility. Biochemistry. 1995 Feb 14;34(6):1878–1884. doi: 10.1021/bi00006a008. [DOI] [PubMed] [Google Scholar]
  33. Tanaka A., Flanagan J., Sturtevant J. M. Thermal unfolding of staphylococcal nuclease and several mutant forms thereof studied by differential scanning calorimetry. Protein Sci. 1993 Apr;2(4):567–576. doi: 10.1002/pro.5560020408. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Villafranca J. E., Howell E. E., Oatley S. J., Xuong N. H., Kraut J. An engineered disulfide bond in dihydrofolate reductase. Biochemistry. 1987 Apr 21;26(8):2182–2189. doi: 10.1021/bi00382a017. [DOI] [PubMed] [Google Scholar]

Articles from Protein Science : A Publication of the Protein Society are provided here courtesy of The Protein Society

RESOURCES