Skip to main content
Protein Science : A Publication of the Protein Society logoLink to Protein Science : A Publication of the Protein Society
. 1996 Oct;5(10):2020–2028. doi: 10.1002/pro.5560051008

Cation selective promotion of tubulin polymerization by alkali metal chlorides.

J Wolff 1, D L Sackett 1, L Knipling 1
PMCID: PMC2143265  PMID: 8897602

Abstract

A role for charge-based interactions in protein stability at the monomer or dimer level is well known. We show here that such interactions can also be important for the higher-order structures of microtubule assembly. Alkali metal chlorides increase the rate of polymerization of pure tubulin driven by either taxol or dimethyl sulfoxide. The effect is cation selective, exhibiting a sequence Na+ > K+ > Li+ > Cs+, with optimal concentrations for Na+ at approximately 160 mM. Hofmeister anion effects are additive with these rate stimulations. Sodium is less potent than guanidinium ion stimulation reported previously, but produces a larger fraction of normal microtubules. Alkali metal cations lower the critical concentration by a factor of approximately 2, produce cold reversible polymers whose formation is sensitive to podophyllotoxin inhibition, increase the fraction of polymers present as microtubules from approximately 0.9 to 0.99, and reverse or prevent urea-induced depolymerization of microtubules. In the presence of microtubule-associated proteins, the promotion of polymerization is no longer cation selective. In the polymerization of tubulin S, in which the acidic C termini of both monomers have been cleaved, the cation enhancement is markedly decreased, although selective persists. Because the selectivity sequence is similar to that of the coil/helix transition of polyglutamic acid, we suggest that a major part, although not all, of the cation selective enhancement of polymerization results from shielding of the glutamate-rich C termini of the tubulin monomers.

Full Text

The Full Text of this article is available as a PDF (6.1 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arnal I., Wade R. H. How does taxol stabilize microtubules? Curr Biol. 1995 Aug 1;5(8):900–908. doi: 10.1016/s0960-9822(95)00180-1. [DOI] [PubMed] [Google Scholar]
  2. Burns R. G., Islam K., Chapman R. The multiple phosphorylation of the microtubule-associated protein MAP2 controls the MAP2:tubulin interaction. Eur J Biochem. 1984 Jun 15;141(3):609–615. doi: 10.1111/j.1432-1033.1984.tb08236.x. [DOI] [PubMed] [Google Scholar]
  3. Caplow M., Ruhlen R. L., Shanks J. The free energy for hydrolysis of a microtubule-bound nucleotide triphosphate is near zero: all of the free energy for hydrolysis is stored in the microtubule lattice. J Cell Biol. 1994 Nov;127(3):779–788. doi: 10.1083/jcb.127.3.779. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Croom H. B., Correia J. J., Williams R. C., Jr The effects of elevated pH and high salt concentrations on tubulin. Arch Biochem Biophys. 1986 Sep;249(2):397–406. doi: 10.1016/0003-9861(86)90016-0. [DOI] [PubMed] [Google Scholar]
  5. Di Cera E., Guinto E. R., Vindigni A., Dang Q. D., Ayala Y. M., Wuyi M., Tulinsky A. The Na+ binding site of thrombin. J Biol Chem. 1995 Sep 22;270(38):22089–22092. doi: 10.1074/jbc.270.38.22089. [DOI] [PubMed] [Google Scholar]
  6. Dougherty D. A. Cation-pi interactions in chemistry and biology: a new view of benzene, Phe, Tyr, and Trp. Science. 1996 Jan 12;271(5246):163–168. doi: 10.1126/science.271.5246.163. [DOI] [PubMed] [Google Scholar]
  7. Dye R. B., Fink S. P., Williams R. C., Jr Taxol-induced flexibility of microtubules and its reversal by MAP-2 and Tau. J Biol Chem. 1993 Apr 5;268(10):6847–6850. [PubMed] [Google Scholar]
  8. EISENMAN G. Cation selective glass electrodes and their mode of operation. Biophys J. 1962 Mar;2(2 Pt 2):259–323. doi: 10.1016/s0006-3495(62)86959-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Erickson H. P., Voter W. A. Polycation-induced assembly of purified tubulin. Proc Natl Acad Sci U S A. 1976 Aug;73(8):2813–2817. doi: 10.1073/pnas.73.8.2813. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Farrell K. W., Morse A., Wilson L. Characterization of the in vitro reassembly of tubulin derived from stable Strongylocentrotus purpuratus outer doublet microtubules. Biochemistry. 1979 Mar 6;18(5):905–911. doi: 10.1021/bi00572a027. [DOI] [PubMed] [Google Scholar]
  11. Gupta R. P., Abou-Donia M. B. In vivo and in vitro effects of diisopropyl phosphorofluoridate (DFP) on the rate of hen brain tubulin polymerization. Neurochem Res. 1994 Apr;19(4):435–444. doi: 10.1007/BF00967321. [DOI] [PubMed] [Google Scholar]
  12. Haga T., Abe T., Kurokawa M. Polymerization and depolymerization of microtubules in vitro as studied by flow birefringence. FEBS Lett. 1974 Mar 1;39(3):291–295. doi: 10.1016/0014-5793(74)80133-x. [DOI] [PubMed] [Google Scholar]
  13. Hamel E., Lin C. M. Separation of active tubulin and microtubule-associated proteins by ultracentrifugation and isolation of a component causing the formation of microtubule bundles. Biochemistry. 1984 Aug 28;23(18):4173–4184. doi: 10.1021/bi00313a026. [DOI] [PubMed] [Google Scholar]
  14. Kim H., Binder L. I., Rosenbaum J. L. The periodic association of MAP2 with brain microtubules in vitro. J Cell Biol. 1979 Feb;80(2):266–276. doi: 10.1083/jcb.80.2.266. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Kohn W. D., Kay C. M., Hodges R. S. Protein destabilization by electrostatic repulsions in the two-stranded alpha-helical coiled-coil/leucine zipper. Protein Sci. 1995 Feb;4(2):237–250. doi: 10.1002/pro.5560040210. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Kuriyama R., Sakai H. Viscometric demonstration of tubulin polymerization. J Biochem. 1974 Mar;75(3):463–471. doi: 10.1093/oxfordjournals.jbchem.a130415. [DOI] [PubMed] [Google Scholar]
  17. Lee Y. C., Samson F. E., Jr, Houston L. L., Himes R. H. The in vitro polymerization of tubulin from beef brain. J Neurobiol. 1974;5(4):317–330. doi: 10.1002/neu.480050404. [DOI] [PubMed] [Google Scholar]
  18. Littauer U. Z., Giveon D., Thierauf M., Ginzburg I., Ponstingl H. Common and distinct tubulin binding sites for microtubule-associated proteins. Proc Natl Acad Sci U S A. 1986 Oct;83(19):7162–7166. doi: 10.1073/pnas.83.19.7162. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Little M., Seehaus T. Comparative analysis of tubulin sequences. Comp Biochem Physiol B. 1988;90(4):655–670. doi: 10.1016/0305-0491(88)90320-3. [DOI] [PubMed] [Google Scholar]
  20. Lobert S., Isern N., Hennington B. S., Correia J. J. Interaction of tubulin and microtubule proteins with vanadate oligomers. Biochemistry. 1994 May 24;33(20):6244–6252. doi: 10.1021/bi00186a026. [DOI] [PubMed] [Google Scholar]
  21. Martin S. R., Clark D. C., Mayley P. M. Interactions of tubulin and microtubule-associated proteins. Conformation and stability of the oligomeric species from glycerol-cycled microtubule protein of bovine brain. Biochem J. 1982 Jun 1;203(3):643–652. doi: 10.1042/bj2030643. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Mayr L. M., Schmid F. X. Stabilization of a protein by guanidinium chloride. Biochemistry. 1993 Aug 10;32(31):7994–7998. doi: 10.1021/bi00082a021. [DOI] [PubMed] [Google Scholar]
  23. Mejillano M. R., Himes R. H. Assembly properties of tubulin after carboxyl group modification. J Biol Chem. 1991 Jan 5;266(1):657–664. [PubMed] [Google Scholar]
  24. Melki R., Kerjan P., Waller J. P., Carlier M. F., Pantaloni D. Interaction of microtubule-associated proteins with microtubules: yeast lysyl- and valyl-tRNA synthetases and tau 218-235 synthetic peptide as model systems. Biochemistry. 1991 Dec 10;30(49):11536–11545. doi: 10.1021/bi00113a008. [DOI] [PubMed] [Google Scholar]
  25. Mithieux G., Alquier C., Roux B., Rousset B. Interaction of tubulin with chromatin proteins. H1 and core histones. J Biol Chem. 1984 Dec 25;259(24):15523–15531. [PubMed] [Google Scholar]
  26. Modesti N. M., Barra H. S. The interaction of myelin basic protein with tubulin and the inhibition of tubulin carboxypeptidase activity. Biochem Biophys Res Commun. 1986 Apr 29;136(2):482–489. doi: 10.1016/0006-291x(86)90466-3. [DOI] [PubMed] [Google Scholar]
  27. Monera O. D., Kay C. M., Hodges R. S. Protein denaturation with guanidine hydrochloride or urea provides a different estimate of stability depending on the contributions of electrostatic interactions. Protein Sci. 1994 Nov;3(11):1984–1991. doi: 10.1002/pro.5560031110. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Olmsted J. B., Borisy G. G. Ionic and nucleotide requirements for microtubule polymerization in vitro. Biochemistry. 1975 Jul;14(13):2996–3005. doi: 10.1021/bi00684a032. [DOI] [PubMed] [Google Scholar]
  29. Pace C. N., Grimsley G. R. Ribonuclease T1 is stabilized by cation and anion binding. Biochemistry. 1988 May 3;27(9):3242–3246. doi: 10.1021/bi00409a018. [DOI] [PubMed] [Google Scholar]
  30. Panda D., Roy S., Bhattacharyya B. Reversible dimer dissociation of tubulin S and tubulin detected by fluorescence anisotropy. Biochemistry. 1992 Oct 13;31(40):9709–9716. doi: 10.1021/bi00155a026. [DOI] [PubMed] [Google Scholar]
  31. Parness J., Horwitz S. B. Taxol binds to polymerized tubulin in vitro. J Cell Biol. 1981 Nov;91(2 Pt 1):479–487. doi: 10.1083/jcb.91.2.479. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Redeker V., Levilliers N., Schmitter J. M., Le Caer J. P., Rossier J., Adoutte A., Bré M. H. Polyglycylation of tubulin: a posttranslational modification in axonemal microtubules. Science. 1994 Dec 9;266(5191):1688–1691. doi: 10.1126/science.7992051. [DOI] [PubMed] [Google Scholar]
  33. Ringel I., Horwitz S. B. Effect of alkaline pH on taxol-microtubule interactions. J Pharmacol Exp Ther. 1991 Nov;259(2):855–860. [PubMed] [Google Scholar]
  34. Rousset B., Bernier-Valentin F., Wolff J., Roux B. Alterations in tubulin immunoreactivity; relation to secondary structure. Eur J Biochem. 1983 Mar 1;131(1):31–39. doi: 10.1111/j.1432-1033.1983.tb07228.x. [DOI] [PubMed] [Google Scholar]
  35. Sackett D. L., Bhattacharyya B., Wolff J. Tubulin subunit carboxyl termini determine polymerization efficiency. J Biol Chem. 1985 Jan 10;260(1):43–45. [PubMed] [Google Scholar]
  36. Sackett D. L., Knipling L., Wolff J. Isolation of microtubule protein from mammalian brain frozen for extended periods of time. Protein Expr Purif. 1991 Oct-Dec;2(5-6):390–393. doi: 10.1016/1046-5928(91)90099-5. [DOI] [PubMed] [Google Scholar]
  37. Sackett D. L. Structure and function in the tubulin dimer and the role of the acidic carboxyl terminus. Subcell Biochem. 1995;24:255–302. doi: 10.1007/978-1-4899-1727-0_9. [DOI] [PubMed] [Google Scholar]
  38. Serrano L., Wandosell F., de la Torre J., Avila J. Effect of specific proteolytic cleavages on tubulin polymer formation. Biochem J. 1988 Jun 15;252(3):683–691. doi: 10.1042/bj2520683. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Spassov V. Z., Karshikoff A. D., Ladenstein R. Optimization of the electrostatic interactions in proteins of different functional and folding type. Protein Sci. 1994 Sep;3(9):1556–1569. doi: 10.1002/pro.5560030921. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Tiffany M. L., Krimm S. New chain conformations of poly(glutamic acid) and polylysine. Biopolymers. 1968;6(9):1379–1382. doi: 10.1002/bip.1968.360060911. [DOI] [PubMed] [Google Scholar]
  41. Wolff J., Knipling L., Sackett D. L. Charge-shielding and the "paradoxical" stimulation of tubulin polymerization by guanidine hydrochloride. Biochemistry. 1996 May 7;35(18):5910–5920. doi: 10.1021/bi9527395. [DOI] [PubMed] [Google Scholar]

Articles from Protein Science : A Publication of the Protein Society are provided here courtesy of The Protein Society

RESOURCES