Skip to main content
Protein Science : A Publication of the Protein Society logoLink to Protein Science : A Publication of the Protein Society
. 1996 Oct;5(10):2115–2118. doi: 10.1002/pro.5560051018

Water-mediated protein-DNA interactions: the relationship of thermodynamics to structural detail.

C J Morton 1, J E Ladbury 1
PMCID: PMC2143271  PMID: 8897612

Abstract

The elucidation of a relationship between the thermodynamic parameters and the structural changes accompanying biomolecular interactions could lead to predictive algorithms. For example, based on some knowledge of the structure of a target molecule the affinities of ligands could be determined with obvious implications for the pharmaceutical industry. In attempting to relate the thermodynamic and structural changes on formation of a protein-DNA complex, the correlation between change in heat capacity and burial of surface area has proved successful. However, this correlation appears to break down when water molecules are included in the binding interface. Here we present data that support the hypothesis that bound water molecules have to be considered as contributing to the change in heat capacity and could, thus, be used in ligand design.

Full Text

The Full Text of this article is available as a PDF (2.4 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arrowsmith C., Pachter R., Altman R., Jardetzky O. The solution structures of Escherichia coli trp repressor and trp aporepressor at an intermediate resolution. Eur J Biochem. 1991 Nov 15;202(1):53–66. doi: 10.1111/j.1432-1033.1991.tb16344.x. [DOI] [PubMed] [Google Scholar]
  2. Borden K. L., Bauer C. J., Frenkiel T. A., Beckmann P., Lane A. N. Sequence-specific NMR assignments of the trp repressor from Escherichia coli using three-dimensional 15N/1H heteronuclear techniques. Eur J Biochem. 1992 Feb 15;204(1):137–146. doi: 10.1111/j.1432-1033.1992.tb16616.x. [DOI] [PubMed] [Google Scholar]
  3. Ha J. H., Spolar R. S., Record M. T., Jr Role of the hydrophobic effect in stability of site-specific protein-DNA complexes. J Mol Biol. 1989 Oct 20;209(4):801–816. doi: 10.1016/0022-2836(89)90608-6. [DOI] [PubMed] [Google Scholar]
  4. Hyre D. E., Spicer L. D. Thermodynamic evaluation of binding interactions in the methionine repressor system of Escherichia coli using isothermal titration calorimetry. Biochemistry. 1995 Mar 14;34(10):3212–3221. doi: 10.1021/bi00010a010. [DOI] [PubMed] [Google Scholar]
  5. Janin J. Elusive affinities. Proteins. 1995 Jan;21(1):30–39. doi: 10.1002/prot.340210105. [DOI] [PubMed] [Google Scholar]
  6. Joachimiak A., Haran T. E., Sigler P. B. Mutagenesis supports water mediated recognition in the trp repressor-operator system. EMBO J. 1994 Jan 15;13(2):367–372. doi: 10.1002/j.1460-2075.1994.tb06270.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Ladbury J. E. Counting the calories to stay in the groove. Structure. 1995 Jul 15;3(7):635–639. doi: 10.1016/s0969-2126(01)00197-6. [DOI] [PubMed] [Google Scholar]
  8. Ladbury J. E., Wright J. G., Sturtevant J. M., Sigler P. B. A thermodynamic study of the trp repressor-operator interaction. J Mol Biol. 1994 May 20;238(5):669–681. doi: 10.1006/jmbi.1994.1328. [DOI] [PubMed] [Google Scholar]
  9. Lawson C. L., Carey J. Tandem binding in crystals of a trp repressor/operator half-site complex. Nature. 1993 Nov 11;366(6451):178–182. doi: 10.1038/366178a0. [DOI] [PubMed] [Google Scholar]
  10. Lawson C. L., Sigler P. B. The structure of trp pseudorepressor at 1.65A shows why indole propionate acts as a trp 'inducer'. Nature. 1988 Jun 30;333(6176):869–871. doi: 10.1038/333869a0. [DOI] [PubMed] [Google Scholar]
  11. Lee B., Richards F. M. The interpretation of protein structures: estimation of static accessibility. J Mol Biol. 1971 Feb 14;55(3):379–400. doi: 10.1016/0022-2836(71)90324-x. [DOI] [PubMed] [Google Scholar]
  12. Livingstone J. R., Spolar R. S., Record M. T., Jr Contribution to the thermodynamics of protein folding from the reduction in water-accessible nonpolar surface area. Biochemistry. 1991 Apr 30;30(17):4237–4244. doi: 10.1021/bi00231a019. [DOI] [PubMed] [Google Scholar]
  13. Murphy K. P., Gill S. J. Solid model compounds and the thermodynamics of protein unfolding. J Mol Biol. 1991 Dec 5;222(3):699–709. doi: 10.1016/0022-2836(91)90506-2. [DOI] [PubMed] [Google Scholar]
  14. Murphy K. P., Privalov P. L., Gill S. J. Common features of protein unfolding and dissolution of hydrophobic compounds. Science. 1990 Feb 2;247(4942):559–561. doi: 10.1126/science.2300815. [DOI] [PubMed] [Google Scholar]
  15. Naghibi H., Tamura A., Sturtevant J. M. Significant discrepancies between van't Hoff and calorimetric enthalpies. Proc Natl Acad Sci U S A. 1995 Jun 6;92(12):5597–5599. doi: 10.1073/pnas.92.12.5597. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Nicholls A., Sharp K. A., Honig B. Protein folding and association: insights from the interfacial and thermodynamic properties of hydrocarbons. Proteins. 1991;11(4):281–296. doi: 10.1002/prot.340110407. [DOI] [PubMed] [Google Scholar]
  17. Otwinowski Z., Schevitz R. W., Zhang R. G., Lawson C. L., Joachimiak A., Marmorstein R. Q., Luisi B. F., Sigler P. B. Crystal structure of trp repressor/operator complex at atomic resolution. Nature. 1988 Sep 22;335(6188):321–329. doi: 10.1038/335321a0. [DOI] [PubMed] [Google Scholar]
  18. Phillips S. E., Stockley P. G. Similarity of met and trp repressors. Nature. 1994 Mar 10;368(6467):106–106. doi: 10.1038/368106a0. [DOI] [PubMed] [Google Scholar]
  19. Richards F. M. Calculation of molecular volumes and areas for structures of known geometry. Methods Enzymol. 1985;115:440–464. doi: 10.1016/0076-6879(85)15032-9. [DOI] [PubMed] [Google Scholar]
  20. Shakked Z., Guzikevich-Guerstein G., Frolow F., Rabinovich D., Joachimiak A., Sigler P. B. Determinants of repressor/operator recognition from the structure of the trp operator binding site. Nature. 1994 Mar 31;368(6470):469–473. doi: 10.1038/368469a0. [DOI] [PubMed] [Google Scholar]
  21. Shrake A., Rupley J. A. Environment and exposure to solvent of protein atoms. Lysozyme and insulin. J Mol Biol. 1973 Sep 15;79(2):351–371. doi: 10.1016/0022-2836(73)90011-9. [DOI] [PubMed] [Google Scholar]
  22. Smith S. A., Rajur S. B., McLaughlin L. W. Specific purine N7-nitrogens are critical for high affinity binding by the trp repressor. Nat Struct Biol. 1994 Jan;1(1):18–22. doi: 10.1038/nsb0194-18. [DOI] [PubMed] [Google Scholar]
  23. Somers W. S., Phillips S. E. Crystal structure of the met repressor-operator complex at 2.8 A resolution reveals DNA recognition by beta-strands. Nature. 1992 Oct 1;359(6394):387–393. doi: 10.1038/359387a0. [DOI] [PubMed] [Google Scholar]
  24. Somers W. S., Phillips S. E. Crystal structure of the met repressor-operator complex at 2.8 A resolution reveals DNA recognition by beta-strands. Nature. 1992 Oct 1;359(6394):387–393. doi: 10.1038/359387a0. [DOI] [PubMed] [Google Scholar]
  25. Spolar R. S., Record M. T., Jr Coupling of local folding to site-specific binding of proteins to DNA. Science. 1994 Feb 11;263(5148):777–784. doi: 10.1126/science.8303294. [DOI] [PubMed] [Google Scholar]
  26. Sturtevant J. M. Heat capacity and entropy changes in processes involving proteins. Proc Natl Acad Sci U S A. 1977 Jun;74(6):2236–2240. doi: 10.1073/pnas.74.6.2236. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Varadarajan R., Connelly P. R., Sturtevant J. M., Richards F. M. Heat capacity changes for protein-peptide interactions in the ribonuclease S system. Biochemistry. 1992 Feb 11;31(5):1421–1426. doi: 10.1021/bi00120a019. [DOI] [PubMed] [Google Scholar]
  28. Zhao D., Arrowsmith C. H., Jia X., Jardetzky O. Refined solution structures of the Escherichia coli trp holo- and aporepressor. J Mol Biol. 1993 Feb 5;229(3):735–746. doi: 10.1006/jmbi.1993.1076. [DOI] [PubMed] [Google Scholar]

Articles from Protein Science : A Publication of the Protein Society are provided here courtesy of The Protein Society

RESOURCES