Skip to main content
Protein Science : A Publication of the Protein Society logoLink to Protein Science : A Publication of the Protein Society
. 1996 Oct;5(10):2104–2114. doi: 10.1002/pro.5560051017

Dynamics of ribonuclease A and ribonuclease S: computational and experimental studies.

G Nadig 1, G S Ratnaparkhi 1, R Varadarajan 1, S Vishveshwara 1
PMCID: PMC2143277  PMID: 8897611

Abstract

RNase S is a complex consisting of two proteolytic fragments of RNase A: the S peptide (residues 1-20) and S protein (residues 21-124). RNase S and RNase A have very similar X-ray structures and enzymatic activities. Previous experiments have shown increased rates of hydrogen exchange and greater sensitivity to tryptic cleavage for RNase S relative to RNase A. It has therefore been asserted that the RNase S complex is considerably more dynamically flexible than RNase A. In the present study we examine the differences in the dynamics of RNase S and RNase A computationally, by MD simulations, and experimentally, using trypsin cleavage as a probe of dynamics. The fluctuations around the average solution structure during the simulation were analyzed by measuring the RMS deviation in coordinates. No significant differences between RNase S and RNase A dynamics were observed in the simulations. We were able to account for the apparent discrepancy between simulation and experiment by a simple model. According to this model, the experimentally observed differences in dynamics can be quantitatively explained by the small amounts of free S peptide and S protein that are present in equilibrium with the RNase S complex. Thus, folded RNase A and the RNase S complex have identical dynamic behavior, despite the presence of a break in polypeptide chain between residues 20 and 21 in the latter molecule. This is in contrast to what has been widely believed for over 30 years about this important fragment complementation system.

Full Text

The Full Text of this article is available as a PDF (4.9 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. ALLENDE J. E., RICHARDS F. M. The action of trypsin on ribonuclease-S. Biochemistry. 1962 Mar;1:295–304. doi: 10.1021/bi00908a017. [DOI] [PubMed] [Google Scholar]
  2. Brooks C. L., 3rd, Karplus M. Solvent effects on protein motion and protein effects on solvent motion. Dynamics of the active site region of lysozyme. J Mol Biol. 1989 Jul 5;208(1):159–181. doi: 10.1016/0022-2836(89)90093-4. [DOI] [PubMed] [Google Scholar]
  3. Brunne R. M., Liepinsh E., Otting G., Wüthrich K., van Gunsteren W. F. Hydration of proteins. A comparison of experimental residence times of water molecules solvating the bovine pancreatic trypsin inhibitor with theoretical model calculations. J Mol Biol. 1993 Jun 20;231(4):1040–1048. doi: 10.1006/jmbi.1993.1350. [DOI] [PubMed] [Google Scholar]
  4. Connelly P. R., Varadarajan R., Sturtevant J. M., Richards F. M. Thermodynamics of protein-peptide interactions in the ribonuclease S system studied by titration calorimetry. Biochemistry. 1990 Jun 26;29(25):6108–6114. doi: 10.1021/bi00477a031. [DOI] [PubMed] [Google Scholar]
  5. Daggett V., Levitt M. Realistic simulations of native-protein dynamics in solution and beyond. Annu Rev Biophys Biomol Struct. 1993;22:353–380. doi: 10.1146/annurev.bb.22.060193.002033. [DOI] [PubMed] [Google Scholar]
  6. Gómez J., Hilser V. J., Xie D., Freire E. The heat capacity of proteins. Proteins. 1995 Aug;22(4):404–412. doi: 10.1002/prot.340220410. [DOI] [PubMed] [Google Scholar]
  7. Haris P. I., Lee D. C., Chapman D. A Fourier transform infrared investigation of the structural differences between ribonuclease A and ribonuclease S. Biochim Biophys Acta. 1986 Dec 12;874(3):255–265. doi: 10.1016/0167-4838(86)90024-5. [DOI] [PubMed] [Google Scholar]
  8. Ichiye T., Karplus M. Collective motions in proteins: a covariance analysis of atomic fluctuations in molecular dynamics and normal mode simulations. Proteins. 1991;11(3):205–217. doi: 10.1002/prot.340110305. [DOI] [PubMed] [Google Scholar]
  9. Kim E. E., Varadarajan R., Wyckoff H. W., Richards F. M. Refinement of the crystal structure of ribonuclease S. Comparison with and between the various ribonuclease A structures. Biochemistry. 1992 Dec 15;31(49):12304–12314. doi: 10.1021/bi00164a004. [DOI] [PubMed] [Google Scholar]
  10. LABEYRIE F. Etude cinétique de l'action de la trypsine sur la beta-lactoglobuline native ou dénaturée par la chaleur. Biochim Biophys Acta. 1956 Oct;22(1):72–87. doi: 10.1016/0006-3002(56)90225-6. [DOI] [PubMed] [Google Scholar]
  11. Labhardt A. M., Ridge J. A., Lindquist R. N., Baldwin R. L. Measurement of the refolding combination reaction between S-peptide and S-protein. Biochemistry. 1983 Jan 18;22(2):321–327. doi: 10.1021/bi00271a014. [DOI] [PubMed] [Google Scholar]
  12. Lee B., Richards F. M. The interpretation of protein structures: estimation of static accessibility. J Mol Biol. 1971 Feb 14;55(3):379–400. doi: 10.1016/0022-2836(71)90324-x. [DOI] [PubMed] [Google Scholar]
  13. Livingstone J. R., Spolar R. S., Record M. T., Jr Contribution to the thermodynamics of protein folding from the reduction in water-accessible nonpolar surface area. Biochemistry. 1991 Apr 30;30(17):4237–4244. doi: 10.1021/bi00231a019. [DOI] [PubMed] [Google Scholar]
  14. Mark A. E., van Gunsteren W. F. Simulation of the thermal denaturation of hen egg white lysozyme: trapping the molten globule state. Biochemistry. 1992 Sep 1;31(34):7745–7748. doi: 10.1021/bi00149a001. [DOI] [PubMed] [Google Scholar]
  15. Noda Y., Fujiwara K., Yamamoto K., Fukuno T., Segawa S. Specificity of trypsin digestion and conformational flexibility at different sites of unfolded lysozyme. Biopolymers. 1994 Feb;34(2):217–226. doi: 10.1002/bip.360340208. [DOI] [PubMed] [Google Scholar]
  16. OOI T., RUPLEY J. A., SCHERAGA H. A. STRUCTURAL STUDIES OF RIBONUCLEASE. VIII. TRYPTIC HYDROLYSIS OF RIBONUCLEASE A AT ELEVATED TEMPERATURES. Biochemistry. 1963 May-Jun;2:432–437. doi: 10.1021/bi00903a006. [DOI] [PubMed] [Google Scholar]
  17. Pace C. N., Barrett A. J. Kinetics of tryptic hydrolysis of the arginine-valine bond in folded and unfolded ribonuclease T1. Biochem J. 1984 Apr 15;219(2):411–417. doi: 10.1042/bj2190411. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Prasad J., Bhattacharya S., Bhattacharya A. The calcium binding protein of Entamoeba histolytica: expression in Escherichia coli and immunochemical characterization. Cell Mol Biol Res. 1993;39(2):167–175. [PubMed] [Google Scholar]
  19. Privalov P. L., Gill S. J. Stability of protein structure and hydrophobic interaction. Adv Protein Chem. 1988;39:191–234. doi: 10.1016/s0065-3233(08)60377-0. [DOI] [PubMed] [Google Scholar]
  20. RICHARDS F. M., VITHAYATHIL P. J. The preparation of subtilisn-modified ribonuclease and the separation of the peptide and protein components. J Biol Chem. 1959 Jun;234(6):1459–1465. [PubMed] [Google Scholar]
  21. Rosa J. H., Richards F. M. Hydrogen exchange from identified regions of the S-protein component of ribonuclease as a function of temperature, pH, and the binding of S-peptide. J Mol Biol. 1981 Feb 5;145(4):835–851. doi: 10.1016/0022-2836(81)90318-1. [DOI] [PubMed] [Google Scholar]
  22. Ruiz-Sanz J., de Prat Gay G., Otzen D. E., Fersht A. R. Protein fragments as models for events in protein folding pathways: protein engineering analysis of the association of two complementary fragments of the barley chymotrypsin inhibitor 2 (CI-2). Biochemistry. 1995 Feb 7;34(5):1695–1701. doi: 10.1021/bi00005a026. [DOI] [PubMed] [Google Scholar]
  23. SRI RAM J., MAURER P. H. Modified bovine serum albumin. III. Hydrolysis studies with trypsin, chymotrypsin and pepsin. Arch Biochem Biophys. 1957 Jul;70(1):185–204. doi: 10.1016/0003-9861(57)90092-9. [DOI] [PubMed] [Google Scholar]
  24. Santoro J., González C., Bruix M., Neira J. L., Nieto J. L., Herranz J., Rico M. High-resolution three-dimensional structure of ribonuclease A in solution by nuclear magnetic resonance spectroscopy. J Mol Biol. 1993 Feb 5;229(3):722–734. doi: 10.1006/jmbi.1993.1075. [DOI] [PubMed] [Google Scholar]
  25. Schreier A. A., Baldwin R. L. Concentration-dependent hydrogen exchange kinetics of 3H-labeled S-peptide in ribonuclease S. J Mol Biol. 1976 Aug 15;105(3):409–426. doi: 10.1016/0022-2836(76)90101-7. [DOI] [PubMed] [Google Scholar]
  26. Sturtevant J. M. Heat capacity and entropy changes in processes involving proteins. Proc Natl Acad Sci U S A. 1977 Jun;74(6):2236–2240. doi: 10.1073/pnas.74.6.2236. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Taniuchi H., Parr G. R., Juillerat M. A. Complementation in folding and fragment exchange. Methods Enzymol. 1986;131:185–217. doi: 10.1016/0076-6879(86)31042-5. [DOI] [PubMed] [Google Scholar]
  28. Varadarajan R., Connelly P. R., Sturtevant J. M., Richards F. M. Heat capacity changes for protein-peptide interactions in the ribonuclease S system. Biochemistry. 1992 Feb 11;31(5):1421–1426. doi: 10.1021/bi00120a019. [DOI] [PubMed] [Google Scholar]
  29. Varadarajan R., Richards F. M. Crystallographic structures of ribonuclease S variants with nonpolar substitution at position 13: packing and cavities. Biochemistry. 1992 Dec 15;31(49):12315–12327. doi: 10.1021/bi00164a005. [DOI] [PubMed] [Google Scholar]
  30. Wiseman T., Williston S., Brandts J. F., Lin L. N. Rapid measurement of binding constants and heats of binding using a new titration calorimeter. Anal Biochem. 1989 May 15;179(1):131–137. doi: 10.1016/0003-2697(89)90213-3. [DOI] [PubMed] [Google Scholar]
  31. Wlodawer A., Svensson L. A., Sjölin L., Gilliland G. L. Structure of phosphate-free ribonuclease A refined at 1.26 A. Biochemistry. 1988 Apr 19;27(8):2705–2717. doi: 10.1021/bi00408a010. [DOI] [PubMed] [Google Scholar]
  32. Woodward C. K., Rosenberg A. Studies of hydrogen exchange in proteins. V. The correlation of ribonuclease exchange kinetics with the temperature-induced transition. J Biol Chem. 1971 Jul 10;246(13):4105–4113. [PubMed] [Google Scholar]

Articles from Protein Science : A Publication of the Protein Society are provided here courtesy of The Protein Society

RESOURCES