Skip to main content
Protein Science : A Publication of the Protein Society logoLink to Protein Science : A Publication of the Protein Society
. 1996 Nov;5(11):2311–2318. doi: 10.1002/pro.5560051117

Probing the role of tryptophan residues in a cellulose-binding domain by chemical modification.

M R Bray 1, P E Johnson 1, N R Gilkes 1, L P McIntosh 1, D G Kilburn 1, R A Warren 1
PMCID: PMC2143281  PMID: 8931149

Abstract

The cellulose-binding domain (CBDCex) of the mixed function glucanase-xylanase Cex from Cellulomonas fimi contains five tryptophans, two of which are located within the beta-barrel structure and three exposed on the surface (Xu GY et al., 1995, Biochemistry 34:6993-7009). Although all five tryptophans can be oxidized by N-bromosuccinimide (NBS), stopped-flow measurements show that three tryptophans react faster than the other two. NMR analysis during the titration of CBDCex with NBS shows that the tryptophans on the surface of the protein are fully oxidized before there is significant reaction with the two buried tryptophans. Additionally, modification of the exposed tryptophans does not affect the conformation of the backbone of CBDCex, whereas complete oxidation of all five tryptophans denatures the polypeptide. The modification of the equivalent of one and two tryptophans by NBS reduces binding of CBDCex to cellulose by 70% and 90%, respectively. This confirms the direct role of the exposed aromatic residues in the binding of CBDCex to cellulose. Although adsorption to cellulose does afford some protection against NBS, as evidenced by the increased quantity of NBS required to oxidize all of the tryptophan residues, the polypeptide can still be oxidized completely when adsorbed. This suggests that, whereas the binding appears to be irreversible overall [Ong E et al., 1989, Bio/Technology 7:604-607], each of the exposed tryptophans interacts reversibly with cellulose.

Full Text

The Full Text of this article is available as a PDF (1.7 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bray M. R., Carriere A. D., Clarke A. J. Quantitation of tryptophan and tyrosine residues in proteins by fourth-derivative spectroscopy. Anal Biochem. 1994 Sep;221(2):278–284. doi: 10.1006/abio.1994.1412. [DOI] [PubMed] [Google Scholar]
  2. Bray M. R., Clarke A. J. Identification of a glutamate residue at the active site of xylanase A from Schizophyllum commune. Eur J Biochem. 1994 Feb 1;219(3):821–827. doi: 10.1111/j.1432-1033.1994.tb18563.x. [DOI] [PubMed] [Google Scholar]
  3. Bray M. R., Clarke A. J. Identification of an essential tyrosyl residue in the binding site of Schizophyllum commune xylanase A. Biochemistry. 1995 Feb 14;34(6):2006–2014. doi: 10.1021/bi00006a022. [DOI] [PubMed] [Google Scholar]
  4. Din N., Forsythe I. J., Burtnick L. D., Gilkes N. R., Miller R. C., Jr, Warren R. A., Kilburn D. G. The cellulose-binding domain of endoglucanase A (CenA) from Cellulomonas fimi: evidence for the involvement of tryptophan residues in binding. Mol Microbiol. 1994 Feb;11(4):747–755. doi: 10.1111/j.1365-2958.1994.tb00352.x. [DOI] [PubMed] [Google Scholar]
  5. GREEN N. M., WITKOP B. OXIDATION STUDIES OF INDOLES AND THE TERTIARY STRUCTURE OF PROTEINS. Trans N Y Acad Sci. 1964 Apr;26:659–669. doi: 10.1111/j.2164-0947.1964.tb01933.x. [DOI] [PubMed] [Google Scholar]
  6. Gabel D., Steinberg I. Z., Katchalski E. Changes in conformation of insolubilized trypsin and chymotrypsin, followed by fluorescence. Biochemistry. 1971 Dec 7;10(25):4661–4669. doi: 10.1021/bi00801a011. [DOI] [PubMed] [Google Scholar]
  7. Hélene C., Brun F., Yaniv M. Fluorescence study of interactions between valyl- t RNA synthetase and valine-specific tRNA's from Escherichia coli. Biochem Biophys Res Commun. 1969 Oct 22;37(3):393–398. doi: 10.1016/0006-291x(69)90927-9. [DOI] [PubMed] [Google Scholar]
  8. Kawagishi H., Mori H. Chemical modification and NMR studies on a mushroom lectin Ischnoderma resinosum agglutinin (IRA). Biochim Biophys Acta. 1991 Jan 29;1076(2):179–186. doi: 10.1016/0167-4838(91)90263-y. [DOI] [PubMed] [Google Scholar]
  9. Kawaminami S., Ozaki K., Sumitomo N., Hayashi Y., Ito S., Shimada I., Arata Y. A stable isotope-aided NMR study of the active site of an endoglucanase from a strain of Bacillus. J Biol Chem. 1994 Nov 18;269(46):28752–28756. [PubMed] [Google Scholar]
  10. Poole D. M., Hazlewood G. P., Huskisson N. S., Virden R., Gilbert H. J. The role of conserved tryptophan residues in the interaction of a bacterial cellulose binding domain with its ligand. FEMS Microbiol Lett. 1993 Jan 1;106(1):77–83. doi: 10.1111/j.1574-6968.1993.tb05938.x. [DOI] [PubMed] [Google Scholar]
  11. Roumestand C., Gilquin B., Trémeau O., Gatineau E., Mouawad L., Ménez A., Toma F. Proton NMR studies of the structural and dynamical effect of chemical modification of a single aromatic side-chain in a snake cardiotoxin. Relation to the structure of the putative binding site and the cytolytic activity of the toxin. J Mol Biol. 1994 Nov 4;243(4):719–735. doi: 10.1016/0022-2836(94)90043-4. [DOI] [PubMed] [Google Scholar]
  12. Wishart D. S., Sykes B. D., Richards F. M. Relationship between nuclear magnetic resonance chemical shift and protein secondary structure. J Mol Biol. 1991 Nov 20;222(2):311–333. doi: 10.1016/0022-2836(91)90214-q. [DOI] [PubMed] [Google Scholar]
  13. Xu G. Y., Ong E., Gilkes N. R., Kilburn D. G., Muhandiram D. R., Harris-Brandts M., Carver J. P., Kay L. E., Harvey T. S. Solution structure of a cellulose-binding domain from Cellulomonas fimi by nuclear magnetic resonance spectroscopy. Biochemistry. 1995 May 30;34(21):6993–7009. [PubMed] [Google Scholar]
  14. Zhang O., Kay L. E., Olivier J. P., Forman-Kay J. D. Backbone 1H and 15N resonance assignments of the N-terminal SH3 domain of drk in folded and unfolded states using enhanced-sensitivity pulsed field gradient NMR techniques. J Biomol NMR. 1994 Nov;4(6):845–858. doi: 10.1007/BF00398413. [DOI] [PubMed] [Google Scholar]

Articles from Protein Science : A Publication of the Protein Society are provided here courtesy of The Protein Society

RESOURCES