Skip to main content
Protein Science : A Publication of the Protein Society logoLink to Protein Science : A Publication of the Protein Society
. 1996 Nov;5(11):2217–2225. doi: 10.1002/pro.5560051108

Relationship between protein structure and geometrical constraints.

O Lund 1, J Hansen 1, S Brunak 1, J Bohr 1
PMCID: PMC2143282  PMID: 8931140

Abstract

We evaluate to what extent the structure of proteins can be deduced from incomplete knowledge of disulfide bridges, surface assignments, secondary structure assignments, and additional distance constraints. A cost function taking such constraints into account was used to obtain protein structures using a simple minimization algorithm. For small proteins, the approximate structure could be obtained using one additional distance constraint for each amino acid in the protein. We also studied the effect of using predicted secondary structure and surface assignments. The constraints used in this approach typically may be obtained from low-resolution experimental data. When using a cost function based on distances, half of the resulting structures will be mirrored, because the resulting structure and its mirror image will have the same cost. The secondary structure assignments were therefore divided into chirality constraints and distance constraints. Here we report that the problem of mirrored structures, in some cases, can be solved by using a chirality term in the cost function.

Full Text

The Full Text of this article is available as a PDF (2.2 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aszódi A., Gradwell M. J., Taylor W. R. Global fold determination from a small number of distance restraints. J Mol Biol. 1995 Aug 11;251(2):308–326. doi: 10.1006/jmbi.1995.0436. [DOI] [PubMed] [Google Scholar]
  2. Bernstein F. C., Koetzle T. F., Williams G. J., Meyer E. F., Jr, Brice M. D., Rodgers J. R., Kennard O., Shimanouchi T., Tasumi M. The Protein Data Bank: a computer-based archival file for macromolecular structures. J Mol Biol. 1977 May 25;112(3):535–542. doi: 10.1016/s0022-2836(77)80200-3. [DOI] [PubMed] [Google Scholar]
  3. Bohr H., Bohr J., Brunak S., Cotterill R. M., Lautrup B., Nørskov L., Olsen O. H., Petersen S. B. Protein secondary structure and homology by neural networks. The alpha-helices in rhodopsin. FEBS Lett. 1988 Dec 5;241(1-2):223–228. doi: 10.1016/0014-5793(88)81066-4. [DOI] [PubMed] [Google Scholar]
  4. Bohr J., Bohr H., Brunak S., Cotterill R. M., Fredholm H., Lautrup B., Petersen S. B. Protein structures from distance inequalities. J Mol Biol. 1993 Jun 5;231(3):861–869. doi: 10.1006/jmbi.1993.1332. [DOI] [PubMed] [Google Scholar]
  5. Brünger A. T., Nilges M. Computational challenges for macromolecular structure determination by X-ray crystallography and solution NMR-spectroscopy. Q Rev Biophys. 1993 Feb;26(1):49–125. doi: 10.1017/s0033583500003966. [DOI] [PubMed] [Google Scholar]
  6. Elofsson A., Le Grand S. M., Eisenberg D. Local moves: an efficient algorithm for simulation of protein folding. Proteins. 1995 Sep;23(1):73–82. doi: 10.1002/prot.340230109. [DOI] [PubMed] [Google Scholar]
  7. Flöckner H., Braxenthaler M., Lackner P., Jaritz M., Ortner M., Sippl M. J. Progress in fold recognition. Proteins. 1995 Nov;23(3):376–386. doi: 10.1002/prot.340230311. [DOI] [PubMed] [Google Scholar]
  8. Holbrook S. R., Muskal S. M., Kim S. H. Predicting surface exposure of amino acids from protein sequence. Protein Eng. 1990 Aug;3(8):659–665. doi: 10.1093/protein/3.8.659. [DOI] [PubMed] [Google Scholar]
  9. Holley L. H., Karplus M. Protein secondary structure prediction with a neural network. Proc Natl Acad Sci U S A. 1989 Jan;86(1):152–156. doi: 10.1073/pnas.86.1.152. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Hänggi G., Braun W. Pattern recognition and self-correcting distance geometry calculations applied to myohemerythrin. FEBS Lett. 1994 May 16;344(2-3):147–153. doi: 10.1016/0014-5793(94)00366-1. [DOI] [PubMed] [Google Scholar]
  11. Jin L., Cohen F. E., Wells J. A. Structure from function: screening structural models with functional data. Proc Natl Acad Sci U S A. 1994 Jan 4;91(1):113–117. doi: 10.1073/pnas.91.1.113. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Kabsch W., Sander C. Dictionary of protein secondary structure: pattern recognition of hydrogen-bonded and geometrical features. Biopolymers. 1983 Dec;22(12):2577–2637. doi: 10.1002/bip.360221211. [DOI] [PubMed] [Google Scholar]
  13. Leonard C. K., Spellman M. W., Riddle L., Harris R. J., Thomas J. N., Gregory T. J. Assignment of intrachain disulfide bonds and characterization of potential glycosylation sites of the type 1 recombinant human immunodeficiency virus envelope glycoprotein (gp120) expressed in Chinese hamster ovary cells. J Biol Chem. 1990 Jun 25;265(18):10373–10382. [PubMed] [Google Scholar]
  14. Levitt M. A simplified representation of protein conformations for rapid simulation of protein folding. J Mol Biol. 1976 Jun 14;104(1):59–107. doi: 10.1016/0022-2836(76)90004-8. [DOI] [PubMed] [Google Scholar]
  15. Monge A., Friesner R. A., Honig B. An algorithm to generate low-resolution protein tertiary structures from knowledge of secondary structure. Proc Natl Acad Sci U S A. 1994 May 24;91(11):5027–5029. doi: 10.1073/pnas.91.11.5027. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Mumenthaler C., Braun W. Predicting the helix packing of globular proteins by self-correcting distance geometry. Protein Sci. 1995 May;4(5):863–871. doi: 10.1002/pro.5560040506. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Nishikawa K., Ooi T. Prediction of the surface-interior diagram of globular proteins by an empirical method. Int J Pept Protein Res. 1980 Jul;16(1):19–32. doi: 10.1111/j.1399-3011.1980.tb02931.x. [DOI] [PubMed] [Google Scholar]
  18. Qian N., Sejnowski T. J. Predicting the secondary structure of globular proteins using neural network models. J Mol Biol. 1988 Aug 20;202(4):865–884. doi: 10.1016/0022-2836(88)90564-5. [DOI] [PubMed] [Google Scholar]
  19. Rost B., Sander C. Conservation and prediction of solvent accessibility in protein families. Proteins. 1994 Nov;20(3):216–226. doi: 10.1002/prot.340200303. [DOI] [PubMed] [Google Scholar]
  20. Rost B., Sander C. Prediction of protein secondary structure at better than 70% accuracy. J Mol Biol. 1993 Jul 20;232(2):584–599. doi: 10.1006/jmbi.1993.1413. [DOI] [PubMed] [Google Scholar]
  21. Saitoh S., Nakai T., Nishikawa K. A geometrical constraint approach for reproducing the native backbone conformation of a protein. Proteins. 1993 Feb;15(2):191–204. doi: 10.1002/prot.340150209. [DOI] [PubMed] [Google Scholar]
  22. Wako H., Blundell T. L. Use of amino acid environment-dependent substitution tables and conformational propensities in structure prediction from aligned sequences of homologous proteins. II. Secondary structures. J Mol Biol. 1994 May 20;238(5):693–708. doi: 10.1006/jmbi.1994.1330. [DOI] [PubMed] [Google Scholar]
  23. Wako H., Kubota Y. Distance-constraint approach to higher-order structures of globular proteins with empirically determined distances between amino acid residues. J Protein Chem. 1991 Apr;10(2):233–243. doi: 10.1007/BF01024787. [DOI] [PubMed] [Google Scholar]
  24. Wüthrich K., Spitzfaden C., Memmert K., Widmer H., Wider G. Protein secondary structure determination by NMR. Application with recombinant human cyclophilin. FEBS Lett. 1991 Jul 22;285(2):237–247. doi: 10.1016/0014-5793(91)80808-g. [DOI] [PubMed] [Google Scholar]

Articles from Protein Science : A Publication of the Protein Society are provided here courtesy of The Protein Society

RESOURCES