Skip to main content
Protein Science : A Publication of the Protein Society logoLink to Protein Science : A Publication of the Protein Society
. 1996 Nov;5(11):2203–2216. doi: 10.1002/pro.5560051107

Cleavage site analysis in picornaviral polyproteins: discovering cellular targets by neural networks.

N Blom 1, J Hansen 1, D Blaas 1, S Brunak 1
PMCID: PMC2143287  PMID: 8931139

Abstract

Picornaviral proteinases are responsible for maturation cleavages of the viral polyprotein, but also catalyze the degradation of cellular targets. Using graphical visualization techniques and neural network algorithms, we have investigated the sequence specificity of the two proteinases 2Apro and 3Cpro. The cleavage of VP0 (giving rise to VP2 and VP4), which is carried out by a so-far unknown proteinase, was also examined. In combination with a novel surface exposure prediction algorithm, our neural network approach successfully distinguishes known cleavage sites from noncleavage sites and yields a more consistent definition of features common to these sites. The method is able to predict experimentally determined cleavage sites in cellular proteins. We present a list of mammalian and other proteins that are predicted to be possible targets for the viral proteinases. Whether these proteins are indeed cleaved awaits experimental verification. Additionally, we report several errors detected in the protein databases. A computer server for prediction of cleavage sites by picornaviral proteinases is publicly available at the e-mail address NetPicoRNA@cbs.dtu.dk or via WWW at http:@www.cbs.dtu.dk/services/NetPicoRNA/.

Full Text

The Full Text of this article is available as a PDF (6.2 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arnold E., Luo M., Vriend G., Rossmann M. G., Palmenberg A. C., Parks G. D., Nicklin M. J., Wimmer E. Implications of the picornavirus capsid structure for polyprotein processing. Proc Natl Acad Sci U S A. 1987 Jan;84(1):21–25. doi: 10.1073/pnas.84.1.21. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Auvinen P., Hyypiä T. Echoviruses include genetically distinct serotypes. J Gen Virol. 1990 Sep;71(Pt 9):2133–2139. doi: 10.1099/0022-1317-71-9-2133. [DOI] [PubMed] [Google Scholar]
  3. Basavappa R., Syed R., Flore O., Icenogle J. P., Filman D. J., Hogle J. M. Role and mechanism of the maturation cleavage of VP0 in poliovirus assembly: structure of the empty capsid assembly intermediate at 2.9 A resolution. Protein Sci. 1994 Oct;3(10):1651–1669. doi: 10.1002/pro.5560031005. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Beck E., Forss S., Strebel K., Cattaneo R., Feil G. Structure of the FMDV translation initiation site and of the structural proteins. Nucleic Acids Res. 1983 Nov 25;11(22):7873–7885. doi: 10.1093/nar/11.22.7873. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Berger A., Schechter I. Mapping the active site of papain with the aid of peptide substrates and inhibitors. Philos Trans R Soc Lond B Biol Sci. 1970 Feb 12;257(813):249–264. doi: 10.1098/rstb.1970.0024. [DOI] [PubMed] [Google Scholar]
  6. Bishop N. E., Anderson D. A. RNA-dependent cleavage of VP0 capsid protein in provirions of hepatitis A virus. Virology. 1993 Dec;197(2):616–623. doi: 10.1006/viro.1993.1636. [DOI] [PubMed] [Google Scholar]
  7. Brunak S., Engelbrecht J., Knudsen S. Cleaning up gene databases. Nature. 1990 Jan 11;343(6254):123–123. doi: 10.1038/343123a0. [DOI] [PubMed] [Google Scholar]
  8. Cao X., Wimmer E. Genetic variation of the poliovirus genome with two VPg coding units. EMBO J. 1996 Jan 2;15(1):23–33. [PMC free article] [PubMed] [Google Scholar]
  9. Chang K. H., Auvinen P., Hyypiä T., Stanway G. The nucleotide sequence of coxsackievirus A9; implications for receptor binding and enterovirus classification. J Gen Virol. 1989 Dec;70(Pt 12):3269–3280. doi: 10.1099/0022-1317-70-12-3269. [DOI] [PubMed] [Google Scholar]
  10. Clark M. E., Dasgupta A. A transcriptionally active form of TFIIIC is modified in poliovirus-infected HeLa cells. Mol Cell Biol. 1990 Oct;10(10):5106–5113. doi: 10.1128/mcb.10.10.5106. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Clark M. E., Hämmerle T., Wimmer E., Dasgupta A. Poliovirus proteinase 3C converts an active form of transcription factor IIIC to an inactive form: a mechanism for inhibition of host cell polymerase III transcription by poliovirus. EMBO J. 1991 Oct;10(10):2941–2947. doi: 10.1002/j.1460-2075.1991.tb07844.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Clark M. E., Lieberman P. M., Berk A. J., Dasgupta A. Direct cleavage of human TATA-binding protein by poliovirus protease 3C in vivo and in vitro. Mol Cell Biol. 1993 Feb;13(2):1232–1237. doi: 10.1128/mcb.13.2.1232. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Connolly M. L. Solvent-accessible surfaces of proteins and nucleic acids. Science. 1983 Aug 19;221(4612):709–713. doi: 10.1126/science.6879170. [DOI] [PubMed] [Google Scholar]
  14. Cordingley M. G., Callahan P. L., Sardana V. V., Garsky V. M., Colonno R. J. Substrate requirements of human rhinovirus 3C protease for peptide cleavage in vitro. J Biol Chem. 1990 Jun 5;265(16):9062–9065. [PubMed] [Google Scholar]
  15. Cordingley M. G., Register R. B., Callahan P. L., Garsky V. M., Colonno R. J. Cleavage of small peptides in vitro by human rhinovirus 14 3C protease expressed in Escherichia coli. J Virol. 1989 Dec;63(12):5037–5045. doi: 10.1128/jvi.63.12.5037-5045.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Falk M. M., Grigera P. R., Bergmann I. E., Zibert A., Multhaup G., Beck E. Foot-and-mouth disease virus protease 3C induces specific proteolytic cleavage of host cell histone H3. J Virol. 1990 Feb;64(2):748–756. doi: 10.1128/jvi.64.2.748-756.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Hellen C. U., Lee C. K., Wimmer E. Determinants of substrate recognition by poliovirus 2A proteinase. J Virol. 1992 Jun;66(6):3330–3338. doi: 10.1128/jvi.66.6.3330-3338.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Jenkins O., Booth J. D., Minor P. D., Almond J. W. The complete nucleotide sequence of coxsackievirus B4 and its comparison to other members of the Picornaviridae. J Gen Virol. 1987 Jul;68(Pt 7):1835–1848. doi: 10.1099/0022-1317-68-7-1835. [DOI] [PubMed] [Google Scholar]
  19. Joachims M., Etchison D. Poliovirus infection results in structural alteration of a microtubule-associated protein. J Virol. 1992 Oct;66(10):5797–5804. doi: 10.1128/jvi.66.10.5797-5804.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Kitamura N., Semler B. L., Rothberg P. G., Larsen G. R., Adler C. J., Dorner A. J., Emini E. A., Hanecak R., Lee J. J., van der Werf S. Primary structure, gene organization and polypeptide expression of poliovirus RNA. Nature. 1981 Jun 18;291(5816):547–553. doi: 10.1038/291547a0. [DOI] [PubMed] [Google Scholar]
  21. Klump H., Auer H., Liebig H. D., Kuechler E., Skern T. Proteolytically active 2A proteinase of human rhinovirus 2 is toxic for Saccharomyces cerevisiae but does not cleave the homologues of eIF-4 gamma in vivo or in vitro. Virology. 1996 Jun 1;220(1):109–118. doi: 10.1006/viro.1996.0291. [DOI] [PubMed] [Google Scholar]
  22. Korning P. G., Hebsgaard S. M., Rouze P., Brunak S. Cleaning the GenBank Arabidopsis thaliana data set. Nucleic Acids Res. 1996 Jan 15;24(2):316–320. doi: 10.1093/nar/24.2.316. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Kräusslich H. G., Wimmer E. Viral proteinases. Annu Rev Biochem. 1988;57:701–754. doi: 10.1146/annurev.bi.57.070188.003413. [DOI] [PubMed] [Google Scholar]
  24. Lamphear B. J., Yan R., Yang F., Waters D., Liebig H. D., Klump H., Kuechler E., Skern T., Rhoads R. E. Mapping the cleavage site in protein synthesis initiation factor eIF-4 gamma of the 2A proteases from human Coxsackievirus and rhinovirus. J Biol Chem. 1993 Sep 15;268(26):19200–19203. [PubMed] [Google Scholar]
  25. Lawson M. A., Semler B. L. Picornavirus protein processing--enzymes, substrates, and genetic regulation. Curr Top Microbiol Immunol. 1990;161:49–87. [PubMed] [Google Scholar]
  26. Lee C. K., Wimmer E. Proteolytic processing of poliovirus polyprotein: elimination of 2Apro-mediated, alternative cleavage of polypeptide 3CD by in vitro mutagenesis. Virology. 1988 Oct;166(2):405–414. doi: 10.1016/0042-6822(88)90511-9. [DOI] [PubMed] [Google Scholar]
  27. Liebig H. D., Ziegler E., Yan R., Hartmuth K., Klump H., Kowalski H., Blaas D., Sommergruber W., Frasel L., Lamphear B. Purification of two picornaviral 2A proteinases: interaction with eIF-4 gamma and influence on in vitro translation. Biochemistry. 1993 Jul 27;32(29):7581–7588. doi: 10.1021/bi00080a033. [DOI] [PubMed] [Google Scholar]
  28. Long A. C., Orr D. C., Cameron J. M., Dunn B. M., Kay J. A consensus sequence for substrate hydrolysis by rhinovirus 3C proteinase. FEBS Lett. 1989 Nov 20;258(1):75–78. doi: 10.1016/0014-5793(89)81619-9. [DOI] [PubMed] [Google Scholar]
  29. Matthews D. A., Smith W. W., Ferre R. A., Condon B., Budahazi G., Sisson W., Villafranca J. E., Janson C. A., McElroy H. E., Gribskov C. L. Structure of human rhinovirus 3C protease reveals a trypsin-like polypeptide fold, RNA-binding site, and means for cleaving precursor polyprotein. Cell. 1994 Jun 3;77(5):761–771. doi: 10.1016/0092-8674(94)90059-0. [DOI] [PubMed] [Google Scholar]
  30. McGregor M. J., Flores T. P., Sternberg M. J. Prediction of beta-turns in proteins using neural networks. Protein Eng. 1989 May;2(7):521–526. doi: 10.1093/protein/2.7.521. [DOI] [PubMed] [Google Scholar]
  31. McLean C., Matthews T. J., Rueckert R. R. Evidence of ambiguous processing and selective degradation in the noncapsid proteins of rhinovirus 1A. J Virol. 1976 Sep;19(3):903–914. doi: 10.1128/jvi.19.3.903-914.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Nomoto A., Omata T., Toyoda H., Kuge S., Horie H., Kataoka Y., Genba Y., Nakano Y., Imura N. Complete nucleotide sequence of the attenuated poliovirus Sabin 1 strain genome. Proc Natl Acad Sci U S A. 1982 Oct;79(19):5793–5797. doi: 10.1073/pnas.79.19.5793. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Qian N., Sejnowski T. J. Predicting the secondary structure of globular proteins using neural network models. J Mol Biol. 1988 Aug 20;202(4):865–884. doi: 10.1016/0022-2836(88)90564-5. [DOI] [PubMed] [Google Scholar]
  34. Robertson B. H., Grubman M. J., Weddell G. N., Moore D. M., Welsh J. D., Fischer T., Dowbenko D. J., Yansura D. G., Small B., Kleid D. G. Nucleotide and amino acid sequence coding for polypeptides of foot-and-mouth disease virus type A12. J Virol. 1985 Jun;54(3):651–660. doi: 10.1128/jvi.54.3.651-660.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Rost B., Sander C. Prediction of protein secondary structure at better than 70% accuracy. J Mol Biol. 1993 Jul 20;232(2):584–599. doi: 10.1006/jmbi.1993.1413. [DOI] [PubMed] [Google Scholar]
  36. Ryan M. D., Drew J. Foot-and-mouth disease virus 2A oligopeptide mediated cleavage of an artificial polyprotein. EMBO J. 1994 Feb 15;13(4):928–933. doi: 10.1002/j.1460-2075.1994.tb06337.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Ryan M. D., Jenkins O., Hughes P. J., Brown A., Knowles N. J., Booth D., Minor P. D., Almond J. W. The complete nucleotide sequence of enterovirus type 70: relationships with other members of the picornaviridae. J Gen Virol. 1990 Oct;71(Pt 10):2291–2299. doi: 10.1099/0022-1317-71-10-2291. [DOI] [PubMed] [Google Scholar]
  38. Schneider T. D., Stephens R. M. Sequence logos: a new way to display consensus sequences. Nucleic Acids Res. 1990 Oct 25;18(20):6097–6100. doi: 10.1093/nar/18.20.6097. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Schultheiss T., Kusov Y. Y., Gauss-Müller V. Proteinase 3C of hepatitis A virus (HAV) cleaves the HAV polyprotein P2-P3 at all sites including VP1/2A and 2A/2B. Virology. 1994 Jan;198(1):275–281. doi: 10.1006/viro.1994.1030. [DOI] [PubMed] [Google Scholar]
  40. Skern T., Sommergruber W., Blaas D., Gruendler P., Fraundorfer F., Pieler C., Fogy I., Kuechler E. Human rhinovirus 2: complete nucleotide sequence and proteolytic processing signals in the capsid protein region. Nucleic Acids Res. 1985 Mar 25;13(6):2111–2126. doi: 10.1093/nar/13.6.2111. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Sommergruber W., Ahorn H., Klump H., Seipelt J., Zoephel A., Fessl F., Krystek E., Blaas D., Kuechler E., Liebig H. D. 2A proteinases of coxsackie- and rhinovirus cleave peptides derived from eIF-4 gamma via a common recognition motif. Virology. 1994 Feb;198(2):741–745. doi: 10.1006/viro.1994.1089. [DOI] [PubMed] [Google Scholar]
  42. Sommergruber W., Ahorn H., Zöphel A., Maurer-Fogy I., Fessl F., Schnorrenberg G., Liebig H. D., Blaas D., Kuechler E., Skern T. Cleavage specificity on synthetic peptide substrates of human rhinovirus 2 proteinase 2A. J Biol Chem. 1992 Nov 5;267(31):22639–22644. [PubMed] [Google Scholar]
  43. Stanway G., Hughes P. J., Mountford R. C., Minor P. D., Almond J. W. The complete nucleotide sequence of a common cold virus: human rhinovirus 14. Nucleic Acids Res. 1984 Oct 25;12(20):7859–7875. doi: 10.1093/nar/12.20.7859. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Supanaranond K., Takeda N., Yamazaki S. The complete nucleotide sequence of a variant of Coxsackievirus A24, an agent causing acute hemorrhagic conjunctivitis. Virus Genes. 1992 Apr;6(2):149–158. doi: 10.1007/BF01703064. [DOI] [PubMed] [Google Scholar]
  45. Tesar M., Marquardt O. Foot-and-mouth disease virus protease 3C inhibits cellular transcription and mediates cleavage of histone H3. Virology. 1990 Feb;174(2):364–374. doi: 10.1016/0042-6822(90)90090-e. [DOI] [PubMed] [Google Scholar]
  46. Ypma-Wong M. F., Filman D. J., Hogle J. M., Semler B. L. Structural domains of the poliovirus polyprotein are major determinants for proteolytic cleavage at Gln-Gly pairs. J Biol Chem. 1988 Nov 25;263(33):17846–17856. [PubMed] [Google Scholar]

Articles from Protein Science : A Publication of the Protein Society are provided here courtesy of The Protein Society

RESOURCES