Abstract
Thermostability and unfolding behavior of the wild-type (1,3-1,4)-beta-glucanases from Bacillus macerans (MAC) and Bacillus amyloliquefaciens (AMY) and of two hybrid enzymes H(A12-M) delta F14 and H(A12-M) delta Y13F14A were studied by spectroscopic and microcalorimetric measurements. H(A12-M) delta F14 is constructed by the fusion of 12 N-terminal amino acids of AMY with amino acids 13-214 of MAC, and by deletion of F14. In H(A12-M) delta Y13F14A, the N-terminal region of MAC is exchanged against the AMY sequence, Y13 is deleted, and Phe 14 is exchanged against Ala. The sequence of the N-terminal loop region from Pro 9 to amino acid 16 (or 17) is very important for the properties of the enzymes and influences the effects of Ca2+ ions on the thermostability and unfolding behavior of the enzymes. The half transition temperatures T(m) are higher in the presence of Ca2+ than in Ca2+ free buffer. Furthermore, the unfolding mechanism is influenced by Ca2+. In Ca(2+)-free buffer, MAC, H(A12-M) delta F14 and H(A12-M) delta Y13F14A unfold in a single cooperative transition from the folded state to the unfolded state, whereas for AMY, a two-step unfolding was found. In the presence of Ca2+, the two-step unfolding of AMY is strengthened. Furthermore, for H(A12-M) delta F14, a two-step unfolding is induced by Ca2+. These data indicate a two-domain structure of AMY and H(A12-M) delta F14, in the presence of Ca2+. Thus, point mutations in a peripheral loop region are decisive for thermal stabilities and unfolding mechanisms of the studied glucanases in the presence of Ca2+.
Full Text
The Full Text of this article is available as a PDF (2.2 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Borriss R., Buettner K., Maentsaelae P. Structure of the beta-1,3-1,4-glucanase gene of Bacillus macerans: homologies to other beta-glucanases. Mol Gen Genet. 1990 Jul;222(2-3):278–283. doi: 10.1007/BF00633829. [DOI] [PubMed] [Google Scholar]
- Bueno A., Vazquez de Aldana C. R., Correa J., Villa T. G., del Rey F. Synthesis and secretion of a Bacillus circulans WL-12 1,3-1,4-beta-D-glucanase in Escherichia coli. J Bacteriol. 1990 Apr;172(4):2160–2167. doi: 10.1128/jb.172.4.2160-2167.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fincher G. B., Lock P. A., Morgan M. M., Lingelbach K., Wettenhall R. E., Mercer J. F., Brandt A., Thomsen K. K. Primary structure of the (1-->3,1-->4)-beta-D-glucan 4-glucohydrolase from barley aleurone. Proc Natl Acad Sci U S A. 1986 Apr;83(7):2081–2085. doi: 10.1073/pnas.83.7.2081. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gill S. C., von Hippel P. H. Calculation of protein extinction coefficients from amino acid sequence data. Anal Biochem. 1989 Nov 1;182(2):319–326. doi: 10.1016/0003-2697(89)90602-7. [DOI] [PubMed] [Google Scholar]
- Gosalbes M. J., Pérez-González J. A., González R., Navarro A. Two beta-glycanase genes are clustered in Bacillus polymyxa: molecular cloning, expression, and sequence analysis of genes encoding a xylanase and an endo-beta-(1,3)-(1,4)-glucanase. J Bacteriol. 1991 Dec;173(23):7705–7710. doi: 10.1128/jb.173.23.7705-7710.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hahn M., Keitel T., Heinemann U. Crystal and molecular structure at 0.16-nm resolution of the hybrid Bacillus endo-1,3-1,4-beta-D-glucan 4-glucanohydrolase H(A16-M). Eur J Biochem. 1995 Sep 15;232(3):849–858. [PubMed] [Google Scholar]
- Hahn M., Olsen O., Politz O., Borriss R., Heinemann U. Crystal structure and site-directed mutagenesis of Bacillus macerans endo-1,3-1,4-beta-glucanase. J Biol Chem. 1995 Feb 17;270(7):3081–3088. doi: 10.1074/jbc.270.7.3081. [DOI] [PubMed] [Google Scholar]
- Keitel T., Meldgaard M., Heinemann U. Cation binding to a Bacillus (1,3-1,4)-beta-glucanase. Geometry, affinity and effect on protein stability. Eur J Biochem. 1994 May 15;222(1):203–214. doi: 10.1111/j.1432-1033.1994.tb18858.x. [DOI] [PubMed] [Google Scholar]
- Keitel T., Simon O., Borriss R., Heinemann U. Molecular and active-site structure of a Bacillus 1,3-1,4-beta-glucanase. Proc Natl Acad Sci U S A. 1993 Jun 1;90(11):5287–5291. doi: 10.1073/pnas.90.11.5287. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lloberas J., Perez-Pons J. A., Querol E. Molecular cloning, expression and nucleotide sequence of the endo-beta-1,3-1,4-D-glucanase gene from Bacillus licheniformis. Predictive structural analyses of the encoded polypeptide. Eur J Biochem. 1991 Apr 23;197(2):337–343. doi: 10.1111/j.1432-1033.1991.tb15916.x. [DOI] [PubMed] [Google Scholar]
- Manning M. C., Woody R. W. Theoretical study of the contribution of aromatic side chains to the circular dichroism of basic bovine pancreatic trypsin inhibitor. Biochemistry. 1989 Oct 17;28(21):8609–8613. doi: 10.1021/bi00447a051. [DOI] [PubMed] [Google Scholar]
- Murphy N., McConnell D. J., Cantwell B. A. The DNA sequence of the gene and genetic control sites for the excreted B. subtilis enzyme beta-glucanase. Nucleic Acids Res. 1984 Jul 11;12(13):5355–5367. doi: 10.1093/nar/12.13.5355. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Politz O., Simon O., Olsen O., Borriss R. Determinants for the enhanced thermostability of hybrid (1-3,1-4)-beta-glucanases. Eur J Biochem. 1993 Sep 15;216(3):829–834. doi: 10.1111/j.1432-1033.1993.tb18204.x. [DOI] [PubMed] [Google Scholar]
- Welfle K., Misselwitz R., Welfle H., Simon O., Politz O., Borriss R. Microcalorimetric determination of the thermostability of three hybrid (1-3,1-4)-beta-glucanases. J Biomol Struct Dyn. 1994 Jun;11(6):1417–1424. doi: 10.1080/07391102.1994.10508076. [DOI] [PubMed] [Google Scholar]
