Abstract
Mini insulin-like growth factor 1, an inactive insulin-like growth factor 1 mutant lacking the C region, was studied by 2D NMR spectroscopy. Resonances were assigned for almost all protons of the 57 amino acid residues. The 3D structure of the protein was determined by distance geometry methods. Three helical segments; Ala 8-Cys 18, Gly 42-Phe 49, and Leu 54-Cys 61, were identified, corresponding to those present in wild-type insulin-like growth factor 1 and in single-chain insulin. Their relative orientation, however, was found to be changed. This change is connected with a displacement of the Phe 23-Tyr 24-Phe 25-Asn 26 beta-strand-like segment, i.e., of aromatic side chains known to be important for receptor binding. Thus, deletion of the C region of IGF-1 results in a substantial tertiary structural rearrangement that accounts for the loss of receptor affinity.
Full Text
The Full Text of this article is available as a PDF (7.5 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bayne M. L., Applebaum J., Chicchi G. G., Miller R. E., Cascieri M. A. The roles of tyrosines 24, 31, and 60 in the high affinity binding of insulin-like growth factor-I to the type 1 insulin-like growth factor receptor. J Biol Chem. 1990 Sep 15;265(26):15648–15652. [PubMed] [Google Scholar]
- Blundell T. L., Bedarkar S., Rinderknecht E., Humbel R. E. Insulin-like growth factor: a model for tertiary structure accounting for immunoreactivity and receptor binding. Proc Natl Acad Sci U S A. 1978 Jan;75(1):180–184. doi: 10.1073/pnas.75.1.180. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Brandenburg D., Schermutzki W., Zahn H. NalphaA1-N-epsilon B-29-crosslinked diaminosuberoylinsulin, a potential intermediate for the chemical synthesis of insulin. Hoppe Seylers Z Physiol Chem. 1973 Oct-Nov;354(10-11):1521–1524. [PubMed] [Google Scholar]
- Cascieri M. A., Chicchi G. G., Applebaum J., Hayes N. S., Green B. G., Bayne M. L. Mutants of human insulin-like growth factor I with reduced affinity for the type 1 insulin-like growth factor receptor. Biochemistry. 1988 May 3;27(9):3229–3233. doi: 10.1021/bi00409a016. [DOI] [PubMed] [Google Scholar]
- Gliemann J., Gammeltoft S. The biological activity and the binding affinity of modified insulins determined on isolated rat fat cells. Diabetologia. 1974 Apr;10(2):105–113. doi: 10.1007/BF01219665. [DOI] [PubMed] [Google Scholar]
- Heding A., Gill R., Ogawa Y., De Meyts P., Shymko R. M. Biosensor measurement of the binding of insulin-like growth factors I and II and their analogues to the insulin-like growth factor-binding protein-3. J Biol Chem. 1996 Jun 14;271(24):13948–13952. doi: 10.1074/jbc.271.24.13948. [DOI] [PubMed] [Google Scholar]
- Hua Q. X., Ladbury J. E., Weiss M. A. Dynamics of a monomeric insulin analogue: testing the molten-globule hypothesis. Biochemistry. 1993 Feb 16;32(6):1433–1442. doi: 10.1021/bi00057a006. [DOI] [PubMed] [Google Scholar]
- Hua Q. X., Shoelson S. E., Kochoyan M., Weiss M. A. Receptor binding redefined by a structural switch in a mutant human insulin. Nature. 1991 Nov 21;354(6350):238–241. doi: 10.1038/354238a0. [DOI] [PubMed] [Google Scholar]
- Kaptein R., Boelens R., Scheek R. M., van Gunsteren W. F. Protein structures from NMR. Biochemistry. 1988 Jul 26;27(15):5389–5395. doi: 10.1021/bi00415a001. [DOI] [PubMed] [Google Scholar]
- Kjeldsen T., Andersen A. S., Wiberg F. C., Rasmussen J. S., Schäffer L., Balschmidt P., Møller K. B., Møller N. P. The ligand specificities of the insulin receptor and the insulin-like growth factor I receptor reside in different regions of a common binding site. Proc Natl Acad Sci U S A. 1991 May 15;88(10):4404–4408. doi: 10.1073/pnas.88.10.4404. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Markussen J., Jørgensen K. H., Sørensen A. R., Thim L. Single chain des-(B30) insulin. Intramolecular crosslinking of insulin by trypsin catalyzed transpeptidation. Int J Pept Protein Res. 1985 Jul;26(1):70–77. [PubMed] [Google Scholar]
- Murray-Rust J., McLeod A. N., Blundell T. L., Wood S. P. Structure and evolution of insulins: implications for receptor binding. Bioessays. 1992 May;14(5):325–331. doi: 10.1002/bies.950140507. [DOI] [PubMed] [Google Scholar]
- Nakagawa S. H., Tager H. S. Importance of aliphatic side-chain structure at positions 2 and 3 of the insulin A chain in insulin-receptor interactions. Biochemistry. 1992 Mar 31;31(12):3204–3214. doi: 10.1021/bi00127a023. [DOI] [PubMed] [Google Scholar]
- Nakagawa S. H., Tager H. S. Perturbation of insulin-receptor interactions by intramolecular hormone cross-linking. Analysis of relative movement among residues A1, B1, and B29. J Biol Chem. 1989 Jan 5;264(1):272–279. [PubMed] [Google Scholar]
- Nicholls A., Sharp K. A., Honig B. Protein folding and association: insights from the interfacial and thermodynamic properties of hydrocarbons. Proteins. 1991;11(4):281–296. doi: 10.1002/prot.340110407. [DOI] [PubMed] [Google Scholar]
- Ullrich A., Gray A., Tam A. W., Yang-Feng T., Tsubokawa M., Collins C., Henzel W., Le Bon T., Kathuria S., Chen E. Insulin-like growth factor I receptor primary structure: comparison with insulin receptor suggests structural determinants that define functional specificity. EMBO J. 1986 Oct;5(10):2503–2512. doi: 10.1002/j.1460-2075.1986.tb04528.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wishart D. S., Sykes B. D., Richards F. M. The chemical shift index: a fast and simple method for the assignment of protein secondary structure through NMR spectroscopy. Biochemistry. 1992 Feb 18;31(6):1647–1651. doi: 10.1021/bi00121a010. [DOI] [PubMed] [Google Scholar]
- Wollmer A., Gilge G., Brandenburg D., Gattner H. G. An insulin with the native sequence but virtually no activity. Biol Chem Hoppe Seyler. 1994 Mar;375(3):219–222. [PubMed] [Google Scholar]
