Skip to main content
Protein Science : A Publication of the Protein Society logoLink to Protein Science : A Publication of the Protein Society
. 1996 Nov;5(11):2266–2275. doi: 10.1002/pro.5560051113

Characterization of the S1 binding site of the glutamic acid-specific protease from Streptomyces griseus.

H R Stennicke 1, J J Birktoft 1, K Breddam 1
PMCID: PMC2143298  PMID: 8931145

Abstract

The glutamic acid-specific protease from Streptomyces griseus (SGPE) is an 18.4-kDa serine protease with a distinct preference for Glu in the P1 position. Other enzymes characterized by a strong preference for negatively charged residues in the P1 position, e.g., interleukin-1 beta converting enzyme (ICE), use Arg or Lys residues as counterions within the S1 binding site. However, in SGPE, this function is contributed by a His residue (His 213) and two Ser residues (Ser 192 and S216). It is demonstrated that proSGPE is activated autocatalytically and dependent on the presence of a Glu residue in the -1 position. Based on this observation, the importance of the individual S1 residues is evaluated considering that enzymes unable to recognize a Glu in the P1 position will not be activated. Among the residues constituting the S1 binding site, it is demonstrated that His 213 and Ser 192 are essential for recognition of Glu in the P1 position, whereas Ser 216 is less important for catalysis out has an influence on stabilization of the ground state. From the three-dimensional structure, it appears that His 213 is linked to two other His residues (His 199 and His 228), forming a His triad extending from the S1 binding site to the back of the enzyme. This hypothesis has been tested by substitution of His 199 and His 228 with other amino acid residues. The catalytic parameters obtained with the mutant enzymes, as well as the pH dependence, do not support this theory; rather, it appears that His 199 is responsible for orienting His 213 and that His 228 has no function associated with the recognition of Glu in P1.

Full Text

The Full Text of this article is available as a PDF (3.8 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bazan J. F., Fletterick R. J. Viral cysteine proteases are homologous to the trypsin-like family of serine proteases: structural and functional implications. Proc Natl Acad Sci U S A. 1988 Nov;85(21):7872–7876. doi: 10.1073/pnas.85.21.7872. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Breddam K., Meldal M. Substrate preferences of glutamic-acid-specific endopeptidases assessed by synthetic peptide substrates based on intramolecular fluorescence quenching. Eur J Biochem. 1992 May 15;206(1):103–107. doi: 10.1111/j.1432-1033.1992.tb16906.x. [DOI] [PubMed] [Google Scholar]
  3. Canosi U., Morelli G., Trautner T. A. The relationship between molecular structure and transformation efficiency of some S. aureus plasmids isolated from B. subtilis. Mol Gen Genet. 1978 Nov 9;166(3):259–267. doi: 10.1007/BF00267617. [DOI] [PubMed] [Google Scholar]
  4. Drapeau G. R., Boily Y., Houmard J. Purification and properties of an extracellular protease of Staphylococcus aureus. J Biol Chem. 1972 Oct 25;247(20):6720–6726. [PubMed] [Google Scholar]
  5. Gorbalenya A. E., Donchenko A. P., Blinov V. M., Koonin E. V. Cysteine proteases of positive strand RNA viruses and chymotrypsin-like serine proteases. A distinct protein superfamily with a common structural fold. FEBS Lett. 1989 Jan 30;243(2):103–114. doi: 10.1016/0014-5793(89)80109-7. [DOI] [PubMed] [Google Scholar]
  6. Grøn H., Meldal M., Breddam K. Extensive comparison of the substrate preferences of two subtilisins as determined with peptide substrates which are based on the principle of intramolecular quenching. Biochemistry. 1992 Jul 7;31(26):6011–6018. doi: 10.1021/bi00141a008. [DOI] [PubMed] [Google Scholar]
  7. Houmard J., Drapeau G. R. Staphylococcal protease: a proteolytic enzyme specific for glutamoyl bonds. Proc Natl Acad Sci U S A. 1972 Dec;69(12):3506–3509. doi: 10.1073/pnas.69.12.3506. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Kitadokoro K., Nakamura E., Tamaki M., Horii T., Okamoto H., Shin M., Sato T., Fujiwara T., Tsuzuki H., Yoshida N. Purification, characterization and molecular cloning of an acidic amino acid-specific proteinase from Streptomyces fradiae ATCC 14544. Biochim Biophys Acta. 1993 May 13;1163(2):149–157. doi: 10.1016/0167-4838(93)90176-r. [DOI] [PubMed] [Google Scholar]
  9. Matthews D. A., Smith W. W., Ferre R. A., Condon B., Budahazi G., Sisson W., Villafranca J. E., Janson C. A., McElroy H. E., Gribskov C. L. Structure of human rhinovirus 3C protease reveals a trypsin-like polypeptide fold, RNA-binding site, and means for cleaving precursor polyprotein. Cell. 1994 Jun 3;77(5):761–771. doi: 10.1016/0092-8674(94)90059-0. [DOI] [PubMed] [Google Scholar]
  10. Meldal M., Breddam K. Anthranilamide and nitrotyrosine as a donor-acceptor pair in internally quenched fluorescent substrates for endopeptidases: multicolumn peptide synthesis of enzyme substrates for subtilisin Carlsberg and pepsin. Anal Biochem. 1991 May 15;195(1):141–147. doi: 10.1016/0003-2697(91)90309-h. [DOI] [PubMed] [Google Scholar]
  11. Odake S., Kam C. M., Narasimhan L., Poe M., Blake J. T., Krahenbuhl O., Tschopp J., Powers J. C. Human and murine cytotoxic T lymphocyte serine proteases: subsite mapping with peptide thioester substrates and inhibition of enzyme activity and cytolysis by isocoumarins. Biochemistry. 1991 Feb 26;30(8):2217–2227. doi: 10.1021/bi00222a027. [DOI] [PubMed] [Google Scholar]
  12. Peterson G. L. A simplification of the protein assay method of Lowry et al. which is more generally applicable. Anal Biochem. 1977 Dec;83(2):346–356. doi: 10.1016/0003-2697(77)90043-4. [DOI] [PubMed] [Google Scholar]
  13. Schechter I., Berger A. On the size of the active site in proteases. I. Papain. Biochem Biophys Res Commun. 1967 Apr 20;27(2):157–162. doi: 10.1016/s0006-291x(67)80055-x. [DOI] [PubMed] [Google Scholar]
  14. Shields D. C., Sharp P. M. Synonymous codon usage in Bacillus subtilis reflects both translational selection and mutational biases. Nucleic Acids Res. 1987 Oct 12;15(19):8023–8040. doi: 10.1093/nar/15.19.8023. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Sidhu S. S., Kalmar G. B., Borgford T. J. Characterization of the gene encoding the glutamic-acid-specific protease of Streptomyces griseus. Biochem Cell Biol. 1993 Sep-Oct;71(9-10):454–461. doi: 10.1139/o93-067. [DOI] [PubMed] [Google Scholar]
  16. Silen J. L., Agard D. A. The alpha-lytic protease pro-region does not require a physical linkage to activate the protease domain in vivo. Nature. 1989 Oct 5;341(6241):462–464. doi: 10.1038/341462a0. [DOI] [PubMed] [Google Scholar]
  17. Silen J. L., Frank D., Fujishige A., Bone R., Agard D. A. Analysis of prepro-alpha-lytic protease expression in Escherichia coli reveals that the pro region is required for activity. J Bacteriol. 1989 Mar;171(3):1320–1325. doi: 10.1128/jb.171.3.1320-1325.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Silen J. L., McGrath C. N., Smith K. R., Agard D. A. Molecular analysis of the gene encoding alpha-lytic protease: evidence for a preproenzyme. Gene. 1988 Sep 30;69(2):237–244. doi: 10.1016/0378-1119(88)90434-9. [DOI] [PubMed] [Google Scholar]
  19. Svendsen I., Breddam K. Isolation and amino acid sequence of a glutamic acid specific endopeptidase from Bacillus licheniformis. Eur J Biochem. 1992 Feb 15;204(1):165–171. doi: 10.1111/j.1432-1033.1992.tb16619.x. [DOI] [PubMed] [Google Scholar]
  20. Svendsen I., Jensen M. R., Breddam K. The primary structure of the glutamic acid-specific protease of Streptomyces griseus. FEBS Lett. 1991 Nov 4;292(1-2):165–167. doi: 10.1016/0014-5793(91)80859-2. [DOI] [PubMed] [Google Scholar]
  21. Wilson K. P., Black J. A., Thomson J. A., Kim E. E., Griffith J. P., Navia M. A., Murcko M. A., Chambers S. P., Aldape R. A., Raybuck S. A. Structure and mechanism of interleukin-1 beta converting enzyme. Nature. 1994 Jul 28;370(6487):270–275. doi: 10.1038/370270a0. [DOI] [PubMed] [Google Scholar]
  22. Wright F. The 'effective number of codons' used in a gene. Gene. 1990 Mar 1;87(1):23–29. doi: 10.1016/0378-1119(90)90491-9. [DOI] [PubMed] [Google Scholar]

Articles from Protein Science : A Publication of the Protein Society are provided here courtesy of The Protein Society

RESOURCES