Skip to main content
Protein Science : A Publication of the Protein Society logoLink to Protein Science : A Publication of the Protein Society
. 1996 Nov;5(11):2287–2297. doi: 10.1002/pro.5560051115

Secondary structure, membrane localization, and coassembly within phospholipid membranes of synthetic segments derived from the N- and C-termini regions of the ROMK1 K+ channel.

I Ben-Efraim 1, Y Shai 1
PMCID: PMC2143299  PMID: 8931147

Abstract

The hydropathy plot of the inwardly rectifying ROMK1 K+ channel, which reveals two transmembrane and a pore region domains, also reveals areas of intermediate hydrophobicity in the N terminus (M0) and in the C terminus (post-M2). Peptides that correspond to M0, post-M2, and a control peptide, pre-M0, were synthesized and characterized for their structure, affinity to phospholipid membranes, organizational state in membranes, and ability to self-assemble and coassemble in the membrane-bound state. CD spectroscopy revealed that both M0 and post-M2 adopt highly alpha-helical structures in 1% SDS and 40% TFE/water, whereas pre-M0 is not alpha-helical in either 1% SDS or 40% TFE/water. Binding experiments with NBD-labeled peptides demonstrated that both M0 and post-M2, but not pre-M0, bind to zwitterionic phospholipid membranes with partition coefficients of 10(3)-10(5) M-1. A surface localization for both post-M2 and M0 was indicated by NBD shift, tryptophan quenching experiments with brominated phospholipids, and enzymatic cleavage. Resonance energy transfer measurements between fluorescently labeled pairs of donor (NBD)/ acceptor (rhodamine) peptides revealed that M0 and post-M2 can coassemble in their membrane-bound state, but cannot self-associate when membrane-bound. The results are in agreement with recent data indicating that amino acids in the carboxy terminus of inwardly rectifying K+ channels have a major role in specifying the pore properties of the channels (Taglialatela M, Wible BA, Caporaso R, Brown AM, 1994 Science 264:844-847; Pessia M, Bond CT, Kavanaugh MP, Adelman JP, 1995, Neuron 14:1039-1045). The relevance of the results presented herein to the suggested model for the structure of the ROMK1 channel and to general aspects of molecular recognition between membrane-bound polypeptides are also discussed.

Full Text

The Full Text of this article is available as a PDF (1.9 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adair B. D., Engelman D. M. Glycophorin A helical transmembrane domains dimerize in phospholipid bilayers: a resonance energy transfer study. Biochemistry. 1994 May 10;33(18):5539–5544. doi: 10.1021/bi00184a024. [DOI] [PubMed] [Google Scholar]
  2. Ashford M. L., Bond C. T., Blair T. A., Adelman J. P. Cloning and functional expression of a rat heart KATP channel. Nature. 1994 Aug 11;370(6489):456–459. doi: 10.1038/370456a0. [DOI] [PubMed] [Google Scholar]
  3. Bailin G., Huang J. R. Fluorescence properties of the Ca2+,Mg2(+)-ATPase protein of sarcoplasmic reticulum labeled with 7-chloro-4-nitrobenzo-2-oxa-1,3-diazole. FEBS Lett. 1990 Jan 1;259(2):254–256. doi: 10.1016/0014-5793(90)80021-a. [DOI] [PubMed] [Google Scholar]
  4. Barsukov I. L., Nolde D. E., Lomize A. L., Arseniev A. S. Three-dimensional structure of proteolytic fragment 163-231 of bacterioopsin determined from nuclear magnetic resonance data in solution. Eur J Biochem. 1992 Jun 15;206(3):665–672. doi: 10.1111/j.1432-1033.1992.tb16972.x. [DOI] [PubMed] [Google Scholar]
  5. Ben-Efraim I., Bach D., Shai Y. Spectroscopic and functional characterization of the putative transmembrane segment of the minK potassium channel. Biochemistry. 1993 Mar 9;32(9):2371–2377. doi: 10.1021/bi00060a031. [DOI] [PubMed] [Google Scholar]
  6. Ben-Efraim I., Strahilevitz J., Bach D., Shai Y. Secondary structure and membrane localization of synthetic segments and a truncated form of the IsK (minK) protein. Biochemistry. 1994 Jun 7;33(22):6966–6973. doi: 10.1021/bi00188a028. [DOI] [PubMed] [Google Scholar]
  7. Beschiaschvili G., Seelig J. Melittin binding to mixed phosphatidylglycerol/phosphatidylcholine membranes. Biochemistry. 1990 Jan 9;29(1):52–58. doi: 10.1021/bi00453a007. [DOI] [PubMed] [Google Scholar]
  8. Bolen E. J., Holloway P. W. Quenching of tryptophan fluorescence by brominated phospholipid. Biochemistry. 1990 Oct 16;29(41):9638–9643. doi: 10.1021/bi00493a019. [DOI] [PubMed] [Google Scholar]
  9. Bredt D. S., Wang T. L., Cohen N. A., Guggino W. B., Snyder S. H. Cloning and expression of two brain-specific inwardly rectifying potassium channels. Proc Natl Acad Sci U S A. 1995 Jul 18;92(15):6753–6757. doi: 10.1073/pnas.92.15.6753. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Chattopadhyay A., Mukherjee S. Fluorophore environments in membrane-bound probes: a red edge excitation shift study. Biochemistry. 1993 Apr 13;32(14):3804–3811. doi: 10.1021/bi00065a037. [DOI] [PubMed] [Google Scholar]
  11. Chen Y. H., Yang J. T., Chau K. H. Determination of the helix and beta form of proteins in aqueous solution by circular dichroism. Biochemistry. 1974 Jul 30;13(16):3350–3359. doi: 10.1021/bi00713a027. [DOI] [PubMed] [Google Scholar]
  12. De Kroon A. I., Soekarjo M. W., De Gier J., De Kruijff B. The role of charge and hydrophobicity in peptide-lipid interaction: a comparative study based on tryptophan fluorescence measurements combined with the use of aqueous and hydrophobic quenchers. Biochemistry. 1990 Sep 11;29(36):8229–8240. doi: 10.1021/bi00488a006. [DOI] [PubMed] [Google Scholar]
  13. Frey S., Tamm L. K. Membrane insertion and lateral diffusion of fluorescence-labelled cytochrome c oxidase subunit IV signal peptide in charged and uncharged phospholipid bilayers. Biochem J. 1990 Dec 15;272(3):713–719. doi: 10.1042/bj2720713. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Gazit E., Shai Y. Structural and functional characterization of the alpha 5 segment of Bacillus thuringiensis delta-endotoxin. Biochemistry. 1993 Apr 6;32(13):3429–3436. doi: 10.1021/bi00064a029. [DOI] [PubMed] [Google Scholar]
  15. González-Mañas J. M., Lakey J. H., Pattus F. Brominated phospholipids as a tool for monitoring the membrane insertion of colicin A. Biochemistry. 1992 Aug 18;31(32):7294–7300. doi: 10.1021/bi00147a013. [DOI] [PubMed] [Google Scholar]
  16. Greenfield N., Fasman G. D. Computed circular dichroism spectra for the evaluation of protein conformation. Biochemistry. 1969 Oct;8(10):4108–4116. doi: 10.1021/bi00838a031. [DOI] [PubMed] [Google Scholar]
  17. Harris R. W., Sims P. J., Tweten R. K. Kinetic aspects of the aggregation of Clostridium perfringens theta-toxin on erythrocyte membranes. A fluorescence energy transfer study. J Biol Chem. 1991 Apr 15;266(11):6936–6941. [PubMed] [Google Scholar]
  18. Henn D. K., Baumann A., Kaupp U. B. Probing the transmembrane topology of cyclic nucleotide-gated ion channels with a gene fusion approach. Proc Natl Acad Sci U S A. 1995 Aug 1;92(16):7425–7429. doi: 10.1073/pnas.92.16.7425. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Huang K. S., Bayley H., Liao M. J., London E., Khorana H. G. Refolding of an integral membrane protein. Denaturation, renaturation, and reconstitution of intact bacteriorhodopsin and two proteolytic fragments. J Biol Chem. 1981 Apr 25;256(8):3802–3809. [PubMed] [Google Scholar]
  20. Jaenicke R. Protein folding: local structures, domains, subunits, and assemblies. Biochemistry. 1991 Apr 2;30(13):3147–3161. doi: 10.1021/bi00227a001. [DOI] [PubMed] [Google Scholar]
  21. Kahn T. W., Engelman D. M. Bacteriorhodopsin can be refolded from two independently stable transmembrane helices and the complementary five-helix fragment. Biochemistry. 1992 Jul 7;31(26):6144–6151. doi: 10.1021/bi00141a027. [DOI] [PubMed] [Google Scholar]
  22. Kerppola R. E., Ames G. F. Topology of the hydrophobic membrane-bound components of the histidine periplasmic permease. Comparison with other members of the family. J Biol Chem. 1992 Feb 5;267(4):2329–2336. [PubMed] [Google Scholar]
  23. Kippen A. D., Arcus V. L., Fersht A. R. Structural studies on peptides corresponding to mutants of the major alpha-helix of barnase. Biochemistry. 1994 Aug 23;33(33):10013–10021. doi: 10.1021/bi00199a027. [DOI] [PubMed] [Google Scholar]
  24. Koyama H., Morishige K., Takahashi N., Zanelli J. S., Fass D. N., Kurachi Y. Molecular cloning, functional expression and localization of a novel inward rectifier potassium channel in the rat brain. FEBS Lett. 1994 Mar 21;341(2-3):303–307. doi: 10.1016/0014-5793(94)80478-8. [DOI] [PubMed] [Google Scholar]
  25. Kubo Y., Baldwin T. J., Jan Y. N., Jan L. Y. Primary structure and functional expression of a mouse inward rectifier potassium channel. Nature. 1993 Mar 11;362(6416):127–133. doi: 10.1038/362127a0. [DOI] [PubMed] [Google Scholar]
  26. Kubo Y., Reuveny E., Slesinger P. A., Jan Y. N., Jan L. Y. Primary structure and functional expression of a rat G-protein-coupled muscarinic potassium channel. Nature. 1993 Aug 26;364(6440):802–806. doi: 10.1038/364802a0. [DOI] [PubMed] [Google Scholar]
  27. Lin J., Addison R. Topology of the Neurospora plasma membrane H(+)-ATPase. Localization of a transmembrane segment. J Biol Chem. 1994 Feb 4;269(5):3887–3890. [PubMed] [Google Scholar]
  28. Lomize A. L., Pervushin K. V., Arseniev A. S. Spatial structure of (34-65)bacterioopsin polypeptide in SDS micelles determined from nuclear magnetic resonance data. J Biomol NMR. 1992 Jul;2(4):361–372. doi: 10.1007/BF01874814. [DOI] [PubMed] [Google Scholar]
  29. Makhina E. N., Kelly A. J., Lopatin A. N., Mercer R. W., Nichols C. G. Cloning and expression of a novel human brain inward rectifier potassium channel. J Biol Chem. 1994 Aug 12;269(32):20468–20474. [PubMed] [Google Scholar]
  30. Merrifield R. B., Vizioli L. D., Boman H. G. Synthesis of the antibacterial peptide cecropin A (1-33). Biochemistry. 1982 Sep 28;21(20):5020–5031. doi: 10.1021/bi00263a028. [DOI] [PubMed] [Google Scholar]
  31. Ortells M. O., Lunt G. G. The transmembrane region of the nicotinic acetylcholine receptor: is it an all-helix bundle? Receptors Channels. 1994;2(1):53–59. [PubMed] [Google Scholar]
  32. Papazian D. M., Schwarz T. L., Tempel B. L., Jan Y. N., Jan L. Y. Cloning of genomic and complementary DNA from Shaker, a putative potassium channel gene from Drosophila. Science. 1987 Aug 14;237(4816):749–753. doi: 10.1126/science.2441470. [DOI] [PubMed] [Google Scholar]
  33. Papazian D. M., Shao X. M., Seoh S. A., Mock A. F., Huang Y., Wainstock D. H. Electrostatic interactions of S4 voltage sensor in Shaker K+ channel. Neuron. 1995 Jun;14(6):1293–1301. doi: 10.1016/0896-6273(95)90276-7. [DOI] [PubMed] [Google Scholar]
  34. Peled-Zehavi H., Arkin I. T., Engelman D. M., Shai Y. Coassembly of synthetic segments of shaker K+ channel within phospholipid membranes. Biochemistry. 1996 May 28;35(21):6828–6838. doi: 10.1021/bi952988t. [DOI] [PubMed] [Google Scholar]
  35. Peled H., Shai Y. Membrane interaction and self-assembly within phospholipid membranes of synthetic segments corresponding to the H-5 region of the shaker K+ channel. Biochemistry. 1993 Aug 10;32(31):7879–7885. doi: 10.1021/bi00082a007. [DOI] [PubMed] [Google Scholar]
  36. Pervushin K. V., Arseniev A. S. Three-dimensional structure of (1-36)bacterioopsin in methanol-chloroform mixture and SDS micelles determined by 2D 1H-NMR spectroscopy. FEBS Lett. 1992 Aug 17;308(2):190–196. doi: 10.1016/0014-5793(92)81272-n. [DOI] [PubMed] [Google Scholar]
  37. Planells-Cases R., Ferrer-Montiel A. V., Patten C. D., Montal M. Mutation of conserved negatively charged residues in the S2 and S3 transmembrane segments of a mammalian K+ channel selectively modulates channel gating. Proc Natl Acad Sci U S A. 1995 Sep 26;92(20):9422–9426. doi: 10.1073/pnas.92.20.9422. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Popot J. L., Gerchman S. E., Engelman D. M. Refolding of bacteriorhodopsin in lipid bilayers. A thermodynamically controlled two-stage process. J Mol Biol. 1987 Dec 20;198(4):655–676. doi: 10.1016/0022-2836(87)90208-7. [DOI] [PubMed] [Google Scholar]
  39. Pouny Y., Rapaport D., Mor A., Nicolas P., Shai Y. Interaction of antimicrobial dermaseptin and its fluorescently labeled analogues with phospholipid membranes. Biochemistry. 1992 Dec 15;31(49):12416–12423. doi: 10.1021/bi00164a017. [DOI] [PubMed] [Google Scholar]
  40. Pouny Y., Shai Y. Synthetic peptides corresponding to the four P regions of Electrophorus electricus Na+ channel: interaction with and organization in model phospholipid membranes. Biochemistry. 1995 Jun 13;34(23):7712–7721. doi: 10.1021/bi00023a018. [DOI] [PubMed] [Google Scholar]
  41. Périer F., Radeke C. M., Vandenberg C. A. Primary structure and characterization of a small-conductance inwardly rectifying potassium channel from human hippocampus. Proc Natl Acad Sci U S A. 1994 Jun 21;91(13):6240–6244. doi: 10.1073/pnas.91.13.6240. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Rapaport D., Shai Y. Interaction of fluorescently labeled pardaxin and its analogues with lipid bilayers. J Biol Chem. 1991 Dec 15;266(35):23769–23775. [PubMed] [Google Scholar]
  43. Reynolds J. A., Gilbert D. B., Tanford C. Empirical correlation between hydrophobic free energy and aqueous cavity surface area. Proc Natl Acad Sci U S A. 1974 Aug;71(8):2925–2927. doi: 10.1073/pnas.71.8.2925. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Ridge K. D., Lee S. S., Yao L. L. In vivo assembly of rhodopsin from expressed polypeptide fragments. Proc Natl Acad Sci U S A. 1995 Apr 11;92(8):3204–3208. doi: 10.1073/pnas.92.8.3204. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Rizzo V., Stankowski S., Schwarz G. Alamethicin incorporation in lipid bilayers: a thermodynamic study. Biochemistry. 1987 May 19;26(10):2751–2759. doi: 10.1021/bi00384a015. [DOI] [PubMed] [Google Scholar]
  46. Rodionova N. A., Tatulian S. A., Surrey T., Jähnig F., Tamm L. K. Characterization of two membrane-bound forms of OmpA. Biochemistry. 1995 Feb 14;34(6):1921–1929. doi: 10.1021/bi00006a013. [DOI] [PubMed] [Google Scholar]
  47. Sahin-Tóth M., Dunten R. L., Gonzalez A., Kaback H. R. Functional interactions between putative intramembrane charged residues in the lactose permease of Escherichia coli. Proc Natl Acad Sci U S A. 1992 Nov 1;89(21):10547–10551. doi: 10.1073/pnas.89.21.10547. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Schwarz G., Gerke H., Rizzo V., Stankowski S. Incorporation kinetics in a membrane, studied with the pore-forming peptide alamethicin. Biophys J. 1987 Nov;52(5):685–692. doi: 10.1016/S0006-3495(87)83263-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  49. Schwarz G., Stankowski S., Rizzo V. Thermodynamic analysis of incorporation and aggregation in a membrane: application to the pore-forming peptide alamethicin. Biochim Biophys Acta. 1986 Sep 25;861(1):141–151. doi: 10.1016/0005-2736(86)90573-0. [DOI] [PubMed] [Google Scholar]
  50. Shai Y., Bach D., Yanovsky A. Channel formation properties of synthetic pardaxin and analogues. J Biol Chem. 1990 Nov 25;265(33):20202–20209. [PubMed] [Google Scholar]
  51. Shai Y. Molecular recognition between membrane-spanning polypeptides. Trends Biochem Sci. 1995 Nov;20(11):460–464. doi: 10.1016/s0968-0004(00)89101-x. [DOI] [PubMed] [Google Scholar]
  52. Shuck M. E., Bock J. H., Benjamin C. W., Tsai T. D., Lee K. S., Slightom J. L., Bienkowski M. J. Cloning and characterization of multiple forms of the human kidney ROM-K potassium channel. J Biol Chem. 1994 Sep 30;269(39):24261–24270. [PubMed] [Google Scholar]
  53. Stankowski S., Schwarz G. Electrostatics of a peptide at a membrane/water interface. The pH dependence of melittin association with lipid vesicles. Biochim Biophys Acta. 1990 Jun 27;1025(2):164–172. doi: 10.1016/0005-2736(90)90094-5. [DOI] [PubMed] [Google Scholar]
  54. Strahilevitz J., Mor A., Nicolas P., Shai Y. Spectrum of antimicrobial activity and assembly of dermaseptin-b and its precursor form in phospholipid membranes. Biochemistry. 1994 Sep 13;33(36):10951–10960. doi: 10.1021/bi00202a014. [DOI] [PubMed] [Google Scholar]
  55. Tank D. W., Wu E. S., Meers P. R., Webb W. W. Lateral diffusion of gramicidin C in phospholipid multibilayers. Effects of cholesterol and high gramicidin concentration. Biophys J. 1982 Nov;40(2):129–135. doi: 10.1016/S0006-3495(82)84467-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  56. Thiaudière E., Siffert O., Talbot J. C., Bolard J., Alouf J. E., Dufourcq J. The amphiphilic alpha-helix concept. Consequences on the structure of staphylococcal delta-toxin in solution and bound to lipids. Eur J Biochem. 1991 Jan 1;195(1):203–213. doi: 10.1111/j.1432-1033.1991.tb15696.x. [DOI] [PubMed] [Google Scholar]
  57. Tytgat J., Vereecke J., Carmeliet E. Reversal of rectification and alteration of selectivity and pharmacology in a mammalian Kv1.1 potassium channel by deletion of domains S1 to S4. J Physiol. 1994 Nov 15;481(Pt 1):7–13. doi: 10.1113/jphysiol.1994.sp020414. [DOI] [PMC free article] [PubMed] [Google Scholar]
  58. Van de Voorde A., Tytgat J. Transmembrane segments critical for potassium channel function. Biochem Biophys Res Commun. 1995 Apr 26;209(3):1094–1101. doi: 10.1006/bbrc.1995.1610. [DOI] [PubMed] [Google Scholar]
  59. Vaz W. L., Kapitza H. G., Stümpel J., Sackmann E., Jovin T. M. Translational mobility of glycophorin in bilayer membranes of dimyristoylphosphatidylcholine. Biochemistry. 1981 Mar 3;20(5):1392–1396. doi: 10.1021/bi00508a055. [DOI] [PubMed] [Google Scholar]
  60. Wo Z. G., Oswald R. E. Unraveling the modular design of glutamate-gated ion channels. Trends Neurosci. 1995 Apr;18(4):161–168. doi: 10.1016/0166-2236(95)93895-5. [DOI] [PubMed] [Google Scholar]
  61. Wu C. S., Ikeda K., Yang J. T. Ordered conformation of polypeptides and proteins in acidic dodecyl sulfate solution. Biochemistry. 1981 Feb 3;20(3):566–570. doi: 10.1021/bi00506a019. [DOI] [PubMed] [Google Scholar]
  62. Zen K. H., McKenna E., Bibi E., Hardy D., Kaback H. R. Expression of lactose permease in contiguous fragments as a probe for membrane-spanning domains. Biochemistry. 1994 Jul 12;33(27):8198–8206. doi: 10.1021/bi00193a005. [DOI] [PubMed] [Google Scholar]

Articles from Protein Science : A Publication of the Protein Society are provided here courtesy of The Protein Society

RESOURCES