Skip to main content
Protein Science : A Publication of the Protein Society logoLink to Protein Science : A Publication of the Protein Society
. 1996 Dec;5(12):2575–2582. doi: 10.1002/pro.5560051220

Recombinant human pigment epithelium-derived factor (PEDF): characterization of PEDF overexpressed and secreted by eukaryotic cells.

E Stratikos 1, E Alberdi 1, P G Gettins 1, S P Becerra 1
PMCID: PMC2143303  PMID: 8976566

Abstract

Pigment epithelium-derived factor (PEDF) is a serpin found in the interphotoreceptor matrix of the eye, which, although not a proteinase inhibitor, possesses a number of important biological properties, including promotion of neurite outgrowth and differential expression in quiescent versus senescent states of certain cell types. The low amounts present in the eye, together with the impracticality of using the eye as a source for isolation of the human protein, make it important to establish a system for overexpression of the recombinant protein for biochemical and biological studies. We describe here the expression and secretion of full-length glycosylated human recombinant PEDF at high levels (> 20 micrograms/ mL) into the growth medium of baby hamster kidney cells and characterization of the purified rPEDF by circular dichroism and fluorescence spectroscopies and neurite outgrowth assay. By these assays, the recombinant protein behaves as expected for a correctly folded full-length human PEDF. The availability of milligram amounts of PEDF has permitted quantitation of its heparin binding properties and of the effect of reactive center cleavage on the stability of PEDF towards thermal and guanidine hydrochloride denaturation.

Full Text

The Full Text of this article is available as a PDF (2.5 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Becerra S. P., Palmer I., Kumar A., Steele F., Shiloach J., Notario V., Chader G. J. Overexpression of fetal human pigment epithelium-derived factor in Escherichia coli. A functionally active neurotrophic factor. J Biol Chem. 1993 Nov 5;268(31):23148–23156. [PubMed] [Google Scholar]
  2. Becerra S. P., Sagasti A., Spinella P., Notario V. Pigment epithelium-derived factor behaves like a noninhibitory serpin. Neurotrophic activity does not require the serpin reactive loop. J Biol Chem. 1995 Oct 27;270(43):25992–25999. doi: 10.1074/jbc.270.43.25992. [DOI] [PubMed] [Google Scholar]
  3. Bruch M., Weiss V., Engel J. Plasma serine proteinase inhibitors (serpins) exhibit major conformational changes and a large increase in conformational stability upon cleavage at their reactive sites. J Biol Chem. 1988 Nov 15;263(32):16626–16630. [PubMed] [Google Scholar]
  4. Fan B., Crews B. C., Turko I. V., Choay J., Zettlmeissl G., Gettins P. Heterogeneity of recombinant human antithrombin III expressed in baby hamster kidney cells. Effect of glycosylation differences on heparin binding and structure. J Biol Chem. 1993 Aug 15;268(23):17588–17596. [PubMed] [Google Scholar]
  5. Gettins P. G., Boel E., Crews B. C. Thiol ester role in correct folding and conformation of human alpha 2-macroglobulin. Properties of recombinant C949S variant. FEBS Lett. 1994 Feb 21;339(3):276–280. doi: 10.1016/0014-5793(94)80430-3. [DOI] [PubMed] [Google Scholar]
  6. Gettins P. G., Fan B., Crews B. C., Turko I. V., Olson S. T., Streusand V. J. Transmission of conformational change from the heparin binding site to the reactive center of antithrombin. Biochemistry. 1993 Aug 24;32(33):8385–8389. doi: 10.1021/bi00084a001. [DOI] [PubMed] [Google Scholar]
  7. Gettins P., Harten B. Properties of thrombin- and elastase-modified human antithrombin III. Biochemistry. 1988 May 17;27(10):3634–3639. doi: 10.1021/bi00410a017. [DOI] [PubMed] [Google Scholar]
  8. Hood D. B., Huntington J. A., Gettins P. G. Alpha 1-proteinase inhibitor variant T345R. Influence of P14 residue on substrate and inhibitory pathways. Biochemistry. 1994 Jul 19;33(28):8538–8547. doi: 10.1021/bi00194a020. [DOI] [PubMed] [Google Scholar]
  9. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  10. Levitt M., Greer J. Automatic identification of secondary structure in globular proteins. J Mol Biol. 1977 Aug 5;114(2):181–239. doi: 10.1016/0022-2836(77)90207-8. [DOI] [PubMed] [Google Scholar]
  11. Olson S. T., Bock P. E., Sheffer R. Quantitative evaluation of solution equilibrium binding interactions by affinity partitioning: application to specific and nonspecific protein-heparin interactions. Arch Biochem Biophys. 1991 May 1;286(2):533–545. doi: 10.1016/0003-9861(91)90076-u. [DOI] [PubMed] [Google Scholar]
  12. Oxvig C., Haaning J., Kristensen L., Wagner J. M., Rubin I., Stigbrand T., Gleich G. J., Sottrup-Jensen L. Identification of angiotensinogen and complement C3dg as novel proteins binding the proform of eosinophil major basic protein in human pregnancy serum and plasma. J Biol Chem. 1995 Jun 9;270(23):13645–13651. doi: 10.1074/jbc.270.23.13645. [DOI] [PubMed] [Google Scholar]
  13. Oxvig C., Sand O., Kristensen T., Gleich G. J., Sottrup-Jensen L. Circulating human pregnancy-associated plasma protein-A is disulfide-bridged to the proform of eosinophil major basic protein. J Biol Chem. 1993 Jun 15;268(17):12243–12246. [PubMed] [Google Scholar]
  14. Pignolo R. J., Cristofalo V. J., Rotenberg M. O. Senescent WI-38 cells fail to express EPC-1, a gene induced in young cells upon entry into the G0 state. J Biol Chem. 1993 Apr 25;268(12):8949–8957. [PubMed] [Google Scholar]
  15. Song H. K., Lee K. N., Kwon K. S., Yu M. H., Suh S. W. Crystal structure of an uncleaved alpha 1-antitrypsin reveals the conformation of its inhibitory reactive loop. FEBS Lett. 1995 Dec 18;377(2):150–154. doi: 10.1016/0014-5793(95)01331-8. [DOI] [PubMed] [Google Scholar]
  16. Steele F. R., Chader G. J., Johnson L. V., Tombran-Tink J. Pigment epithelium-derived factor: neurotrophic activity and identification as a member of the serine protease inhibitor gene family. Proc Natl Acad Sci U S A. 1993 Feb 15;90(4):1526–1530. doi: 10.1073/pnas.90.4.1526. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Stein P. E., Leslie A. G., Finch J. T., Carrell R. W. Crystal structure of uncleaved ovalbumin at 1.95 A resolution. J Mol Biol. 1991 Oct 5;221(3):941–959. doi: 10.1016/0022-2836(91)80185-w. [DOI] [PubMed] [Google Scholar]
  18. Streusand V. J., Björk I., Gettins P. G., Petitou M., Olson S. T. Mechanism of acceleration of antithrombin-proteinase reactions by low affinity heparin. Role of the antithrombin binding pentasaccharide in heparin rate enhancement. J Biol Chem. 1995 Apr 21;270(16):9043–9051. doi: 10.1074/jbc.270.16.9043. [DOI] [PubMed] [Google Scholar]
  19. Taniwaki T., Becerra S. P., Chader G. J., Schwartz J. P. Pigment epithelium-derived factor is a survival factor for cerebellar granule cells in culture. J Neurochem. 1995 Jun;64(6):2509–2517. doi: 10.1046/j.1471-4159.1995.64062509.x. [DOI] [PubMed] [Google Scholar]
  20. Tewksbury D. A., Tryon E. S. Immunochemical comparison of high molecular weight angiotensinogen from amniotic fluid, plasma of men, and plasma of pregnant women. Am J Hypertens. 1989 May;2(5 Pt 1):411–413. doi: 10.1093/ajh/2.5.411. [DOI] [PubMed] [Google Scholar]
  21. Tombran-Tink J., Chader G. G., Johnson L. V. PEDF: a pigment epithelium-derived factor with potent neuronal differentiative activity. Exp Eye Res. 1991 Sep;53(3):411–414. doi: 10.1016/0014-4835(91)90248-d. [DOI] [PubMed] [Google Scholar]
  22. Wei A., Rubin H., Cooperman B. S., Christianson D. W. Crystal structure of an uncleaved serpin reveals the conformation of an inhibitory reactive loop. Nat Struct Biol. 1994 Apr;1(4):251–258. doi: 10.1038/nsb0494-251. [DOI] [PubMed] [Google Scholar]
  23. Wright H. T., Qian H. X., Huber R. Crystal structure of plakalbumin, a proteolytically nicked form of ovalbumin. Its relationship to the structure of cleaved alpha-1-proteinase inhibitor. J Mol Biol. 1990 Jun 5;213(3):513–528. doi: 10.1016/s0022-2836(05)80212-8. [DOI] [PubMed] [Google Scholar]
  24. Wu Y. Q., Becerra S. P. Proteolytic activity directed toward pigment epithelium-derived factor in vitreous of bovine eyes. Implications of proteolytic processing. Invest Ophthalmol Vis Sci. 1996 Sep;37(10):1984–1993. [PubMed] [Google Scholar]
  25. Wu Y. Q., Notario V., Chader G. J., Becerra S. P. Identification of pigment epithelium-derived factor in the interphotoreceptor matrix of bovine eyes. Protein Expr Purif. 1995 Aug;6(4):447–456. doi: 10.1006/prep.1995.1060. [DOI] [PubMed] [Google Scholar]
  26. de Agostini A. I., Watkins S. C., Slayter H. S., Youssoufian H., Rosenberg R. D. Localization of anticoagulantly active heparan sulfate proteoglycans in vascular endothelium: antithrombin binding on cultured endothelial cells and perfused rat aorta. J Cell Biol. 1990 Sep;111(3):1293–1304. doi: 10.1083/jcb.111.3.1293. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Protein Science : A Publication of the Protein Society are provided here courtesy of The Protein Society

RESOURCES