Skip to main content
Protein Science : A Publication of the Protein Society logoLink to Protein Science : A Publication of the Protein Society
. 1996 Dec;5(12):2545–2551. doi: 10.1002/pro.5560051217

The ubiquitous cofactor NADH protects against substrate-induced inhibition of a pyridoxal enzyme.

W M Jones 1, P W van Ophem 1, M A Pospischil 1, D Ringe 1, G Petsko 1, K Soda 1, J M Manning 1
PMCID: PMC2143306  PMID: 8976563

Abstract

In the usual reaction catalyzed by D-amino acid transaminase, cleavage of the alpha-H bond is followed by the reversible transfer of the alpha-NH2 to a keto acid cosubstrate in a two-step reaction mediated by the two vitamin B6 forms pyridoxal 5'-phosphate (PLP) and pyridoxamine 5'-phosphate (PMP). We report here a reaction not on the main pathway, i.e., beta-decarboxylation of D-aspartate to D-alanine, which occurs at 0.01% the rate of the major transaminase reaction. In this reaction, beta-C-C bond cleavage of the single substrate D-aspartate occurs rather than the usual alpha-bond cleavage in the transaminase reaction. The D-alanine produced from D-aspartate slowly inhibits both transaminase and decarboxylase activities, but NADH or NADPH instantaneously prevent D-aspartate turnover and D-alanine formation, thereby protecting the enzyme against inhibition. NADH has no effect on the enzyme spectrum itself in the absence of substrates, but it acts on the enzyme.D-aspartate complex with an apparent dissociation constant of 16 microM. Equivalent concentrations of NAD or thiols have no such effect. The suppression of beta-decarboxylase activity by NADH occurs concomitant with a reduction in the 415-nm absorbance due to the PLP form of the enzyme and an increase at 330 nm due to the PMP form of the enzyme. alpha-Ketoglutarate reverses the spectral changes caused by NADH and regenerates the active PLP form of the enzyme from the PMP form with an equilibrium constant of 10 microM. In addition to its known role in shuttling electrons in oxidation-reduction reactions, the niacin derivative NADH may also function by preventing aberrant damaging reactions for some enzyme-substrate intermediates. The D-aspartate-induced effect of NADH may indicate a slow transition between protein conformational studies if the reaction catalyzed is also slow.

Full Text

The Full Text of this article is available as a PDF (640.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Almo S. C., Smith D. L., Danishefsky A. T., Ringe D. The structural basis for the altered substrate specificity of the R292D active site mutant of aspartate aminotransferase from E. coli. Protein Eng. 1994 Mar;7(3):405–412. doi: 10.1093/protein/7.3.405. [DOI] [PubMed] [Google Scholar]
  2. Bhatia M. B., Martinez del Pozo A., Ringe D., Yoshimura T., Soda K., Manning J. M. Role reversal for substrates and inhibitors. Slow inactivation of D-amino acid transaminase by its normal substrates and protection by inhibitors. J Biol Chem. 1993 Aug 25;268(24):17687–17694. [PubMed] [Google Scholar]
  3. Futaki S., Ueno H., Martinez del Pozo A., Pospischil M. A., Manning J. M., Ringe D., Stoddard B., Tanizawa K., Yoshimura T., Soda K. Substitution of glutamine for lysine at the pyridoxal phosphate binding site of bacterial D-amino acid transaminase. Effects of exogenous amines on the slow formation of intermediates. J Biol Chem. 1990 Dec 25;265(36):22306–22312. [PubMed] [Google Scholar]
  4. Hillar A., Nicholls P. A mechanism for NADPH inhibition of catalase compound II formation. FEBS Lett. 1992 Dec 14;314(2):179–182. doi: 10.1016/0014-5793(92)80969-n. [DOI] [PubMed] [Google Scholar]
  5. Huber R. E. Antonini Plenary lecture. A structural basis of light energy and electron transfer in biology. Eur J Biochem. 1990 Jan 26;187(2):283–305. doi: 10.1111/j.1432-1033.1990.tb15305.x. [DOI] [PubMed] [Google Scholar]
  6. Jones W. M., Ringe D., Soda K., Manning J. M. Determination of free D-amino acids with a bacterial transaminase: their depletion leads to inhibition of bacterial growth. Anal Biochem. 1994 Apr;218(1):204–209. doi: 10.1006/abio.1994.1161. [DOI] [PubMed] [Google Scholar]
  7. Kirkman H. N., Gaetani G. F. Catalase: a tetrameric enzyme with four tightly bound molecules of NADPH. Proc Natl Acad Sci U S A. 1984 Jul;81(14):4343–4347. doi: 10.1073/pnas.81.14.4343. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. MEISTER A., SOBER H. A., TICE S. V. Enzymatic decarboxylation of aspartic acid to alpha-alanine. J Biol Chem. 1951 Apr;189(2):577–590. [PubMed] [Google Scholar]
  9. MILDVAN A. S., LEIGH R. A. DETERNATION OF CO-FACTOR DISSOCIATION CONSTANTS FROM THE KINETICS OF INHIBITION OF ENZYMES. Biochim Biophys Acta. 1964 Sep 18;89:393–397. doi: 10.1016/0926-6569(64)90065-3. [DOI] [PubMed] [Google Scholar]
  10. Martinez del Pozo A., Pospischil M. A., Ueno H., Manning J. M., Tanizawa K., Nishimura K., Soda K., Ringe D., Stoddard B., Petsko G. A. Effects of D-serine on bacterial D-amino acid transaminase: accumulation of an intermediate and inactivation of the enzyme. Biochemistry. 1989 Oct 31;28(22):8798–8803. doi: 10.1021/bi00448a018. [DOI] [PubMed] [Google Scholar]
  11. Martinez del Pozo A., Yoshimura T., Bhatia M. B., Futaki S., Manning J. M., Ringe D., Soda K. Inactivation of dimeric D-amino acid transaminase by a normal substrate through formation of an unproductive coenzyme adduct in one subunit. Biochemistry. 1992 Jul 7;31(26):6018–6023. doi: 10.1021/bi00141a009. [DOI] [PubMed] [Google Scholar]
  12. Martinez-Carrion M., Jenkins W. T. D-Alanine-D-glutamate transaminase. II. Inhibitors and the mechanism of transamination of D-amino acids. J Biol Chem. 1965 Sep;240(9):3547–3552. [PubMed] [Google Scholar]
  13. Martínez del Pozo A., Merola M., Ueno H., Manning J. M., Tanizawa K., Nishimura K., Soda K., Ringe D. Stereospecificity of reactions catalyzed by bacterial D-amino acid transaminase. J Biol Chem. 1989 Oct 25;264(30):17784–17789. [PubMed] [Google Scholar]
  14. NOVOGRODSKY A., NISHIMURA J. S., MEISTER A. Transamination and beta-decarboxylation of aspartate catalyzed by the same pyridoxal phosphate-enzyme. J Biol Chem. 1963 May;238:1903–1905. [PubMed] [Google Scholar]
  15. Soper T. S., Jones W. M., Lerner B., Trop M., Manning J. M. Inactivation of bacterial D-amino acid transaminase by beta-chloro-D-alanine. J Biol Chem. 1977 May 25;252(10):3170–3175. [PubMed] [Google Scholar]
  16. Soper T. S., Manning J. M. beta-elimination of beta-halo substrates by D-amino acid transaminase associated with inactivation of the enzyme. Trapping of a key intermediate in the reaction. Biochemistry. 1978 Aug 8;17(16):3377–3384. doi: 10.1021/bi00609a031. [DOI] [PubMed] [Google Scholar]
  17. Sugio S., Petsko G. A., Manning J. M., Soda K., Ringe D. Crystal structure of a D-amino acid aminotransferase: how the protein controls stereoselectivity. Biochemistry. 1995 Aug 1;34(30):9661–9669. doi: 10.1021/bi00030a002. [DOI] [PubMed] [Google Scholar]
  18. YANKEELOV J. A., Jr, KOSHLAND D. E., Jr EVIDENCE FOR CONFORMATION CHANGES INDUCED BY SUBSTRATES OF PHOSPHOGLUCOMUTASE. J Biol Chem. 1965 Apr;240:1593–1602. [PubMed] [Google Scholar]
  19. Yoshimura T., Bhatia M. B., Manning J. M., Ringe D., Soda K. Partial reactions of bacterial D-amino acid transaminase with asparagine substituted for the lysine that binds coenzyme pyridoxal 5'-phosphate. Biochemistry. 1992 Dec 1;31(47):11748–11754. doi: 10.1021/bi00162a011. [DOI] [PubMed] [Google Scholar]
  20. Yoshimura T., Jhee K. H., Soda K. Stereospecificity for the hydrogen transfer and molecular evolution of pyridoxal enzymes. Biosci Biotechnol Biochem. 1996 Feb;60(2):181–187. doi: 10.1271/bbb.60.181. [DOI] [PubMed] [Google Scholar]

Articles from Protein Science : A Publication of the Protein Society are provided here courtesy of The Protein Society

RESOURCES