Skip to main content
Protein Science : A Publication of the Protein Society logoLink to Protein Science : A Publication of the Protein Society
. 1996 Dec;5(12):2617–2622. doi: 10.1002/pro.5560051224

Deglycosylation of proteins for crystallization using recombinant fusion protein glycosidases.

F Grueninger-Leitch 1, A D'Arcy 1, B D'Arcy 1, C Chène 1
PMCID: PMC2143308  PMID: 8976570

Abstract

Obtaining high quality protein crystals remains a rate-limiting step in the determination of three-dimensional X-ray structures. A frequently encountered problem in this respect is the high or heterogeneous carbohydrate content of many eukaryotic proteins. A number of reports have demonstrated the use of enzymatic deglycosylation in the crystallization of certain glycoproteins. Although this is an attractive tool, there are some problems that hinder the more widespread use of glycosidases in crystallization. First, commercially available glycosidases are relatively expensive, which virtually prohibits their use on a large scale. Second, the glycosidase must be removed from the glycoprotein of interest following deglycosylation, which is not always straightforward. To circumvent these problems we have cloned the two most generally useful glycosidases, peptide-N-glycosidase F and endoglycosidase F1 from Flavobacterium meningosepticum, as fusion proteins with glutathione S-transferase. The fusion not only allows rapid purification of these enzymes from Escherichia coli cell extracts, but also permits rapid removal from target proteins following deglycosylation. We have used these enzymes to obtain crystals of phytase from Aspergillus ficuum and acid phosphatase from Aspergillus niger and to obtain a new crystal form of recombinant human renin.

Full Text

The Full Text of this article is available as a PDF (3.1 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aeed P. A., Guido D. M., Mathews W. R., Elhammer A. P. Characterization of the oligosaccharide structures on recombinant human prorenin expressed in Chinese hamster ovary cells. Biochemistry. 1992 Aug 4;31(30):6951–6961. doi: 10.1021/bi00145a013. [DOI] [PubMed] [Google Scholar]
  2. Alexander S., Elder J. H. Endoglycosidases from Flavobacterium meningosepticum application to biological problems. Methods Enzymol. 1989;179:505–518. doi: 10.1016/0076-6879(89)79151-5. [DOI] [PubMed] [Google Scholar]
  3. Baker H. M., Day C. L., Norris G. E., Baker E. N. Enzymatic deglycosylation as a tool for crystallization of mammalian binding proteins. Acta Crystallogr D Biol Crystallogr. 1994 Jul 1;50(Pt 4):380–384. doi: 10.1107/S0907444993013435. [DOI] [PubMed] [Google Scholar]
  4. Barsomian G. D., Johnson T. L., Borowski M., Denman J., Ollington J. F., Hirani S., McNeilly D. S., Rasmussen J. R. Cloning and expression of peptide-N4-(N-acetyl-beta-D-glucosaminyl)asparagine amidase F in Escherichia coli. J Biol Chem. 1990 Apr 25;265(12):6967–6972. [PubMed] [Google Scholar]
  5. Carilli C. T., Vigne J. L., Wallace L. C., Smith L. M., Wong M. A., Lewicki J. A., Baxter J. D. Characterization of recombinant human prorenin and renin. Hypertension. 1988 Jun;11(6 Pt 2):713–716. doi: 10.1161/01.hyp.11.6.713. [DOI] [PubMed] [Google Scholar]
  6. Davis S. J., Puklavec M. J., Ashford D. A., Harlos K., Jones E. Y., Stuart D. I., Williams A. F. Expression of soluble recombinant glycoproteins with predefined glycosylation: application to the crystallization of the T-cell glycoprotein CD2. Protein Eng. 1993 Feb;6(2):229–232. doi: 10.1093/protein/6.2.229. [DOI] [PubMed] [Google Scholar]
  7. Elder J. H., Alexander S. endo-beta-N-acetylglucosaminidase F: endoglycosidase from Flavobacterium meningosepticum that cleaves both high-mannose and complex glycoproteins. Proc Natl Acad Sci U S A. 1982 Aug;79(15):4540–4544. doi: 10.1073/pnas.79.15.4540. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Pace C. N., Vajdos F., Fee L., Grimsley G., Gray T. How to measure and predict the molar absorption coefficient of a protein. Protein Sci. 1995 Nov;4(11):2411–2423. doi: 10.1002/pro.5560041120. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Plummer T. H., Jr, Tarentino A. L. Purification of the oligosaccharide-cleaving enzymes of Flavobacterium meningosepticum. Glycobiology. 1991 Jun;1(3):257–263. doi: 10.1093/glycob/1.3.257. [DOI] [PubMed] [Google Scholar]
  10. Rahuel J., Priestle J. P., Grütter M. G. The crystal structures of recombinant glycosylated human renin alone and in complex with a transition state analog inhibitor. J Struct Biol. 1991 Dec;107(3):227–236. doi: 10.1016/1047-8477(91)90048-2. [DOI] [PubMed] [Google Scholar]
  11. Sanger F., Nicklen S., Coulson A. R. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5463–5467. doi: 10.1073/pnas.74.12.5463. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Sielecki A. R., Hayakawa K., Fujinaga M., Murphy M. E., Fraser M., Muir A. K., Carilli C. T., Lewicki J. A., Baxter J. D., James M. N. Structure of recombinant human renin, a target for cardiovascular-active drugs, at 2.5 A resolution. Science. 1989 Mar 10;243(4896):1346–1351. doi: 10.1126/science.2493678. [DOI] [PubMed] [Google Scholar]
  13. Tarentino A. L., Quinones G., Changchien L. M., Plummer T. H., Jr Multiple endoglycosidase F activities expressed by Flavobacterium meningosepticum endoglycosidases F2 and F3. Molecular cloning, primary sequence, and enzyme expression. J Biol Chem. 1993 May 5;268(13):9702–9708. [PubMed] [Google Scholar]
  14. Tarentino A. L., Quinones G., Schrader W. P., Changchien L. M., Plummer T. H., Jr Multiple endoglycosidase (Endo) F activities expressed by Flavobacterium meningosepticum. Endo F1: molecular cloning, primary sequence, and structural relationship to Endo H. J Biol Chem. 1992 Feb 25;267(6):3868–3872. [PubMed] [Google Scholar]
  15. Tarentino A. L., Quinones G., Trumble A., Changchien L. M., Duceman B., Maley F., Plummer T. H., Jr Molecular cloning and amino acid sequence of peptide-N4-(N-acetyl-beta-D-glucosaminyl)asparagine amidase from flavobacterium meningosepticum. J Biol Chem. 1990 Apr 25;265(12):6961–6966. [PubMed] [Google Scholar]
  16. Trimble R. B., Tarentino A. L. Identification of distinct endoglycosidase (endo) activities in Flavobacterium meningosepticum: endo F1, endo F2, and endo F3. Endo F1 and endo H hydrolyze only high mannose and hybrid glycans. J Biol Chem. 1991 Jan 25;266(3):1646–1651. [PubMed] [Google Scholar]
  17. Ullah A. H., Cummins B. J. Purification, N-terminal amino acid sequence and characterization of pH 2.5 optimum acid phosphatase (E.C. 3.1.3.2) from Aspergillus ficuum. Prep Biochem. 1987;17(4):397–422. doi: 10.1080/00327488708062504. [DOI] [PubMed] [Google Scholar]

Articles from Protein Science : A Publication of the Protein Society are provided here courtesy of The Protein Society

RESOURCES