Skip to main content
Protein Science : A Publication of the Protein Society logoLink to Protein Science : A Publication of the Protein Society
. 1996 Dec;5(12):2643–2646. doi: 10.1002/pro.5560051227

The N-terminal domains of tensin and auxilin are phosphatase homologues.

D T Haynie 1, C P Ponting 1
PMCID: PMC2143309  PMID: 8976573

Abstract

Tensin, an actin filament capping protein, and auxilin, a component of receptor-mediated endocytosis, are known to have 350 residue regions of significant sequence similarity near their N-termini (Schröder et al., 1995, Eur J Biochem 228:297-304). Here we demonstrate that these regions are homologous, not only to each other, but also to the catalytic domain of a putative protein tyrosine phosphatase (PTP) from Saccharomyces cerevisiae and to other PTPs. We propose that the PTP-like portion of the homology region of tensin and auxilin represents a distinct domain. A detailed sequence comparison indicates that the PTP-like domain in tensin is unlikely to exhibit phosphatase activity, whereas in auxilin it may possess a different phosphatase specificity from tyrosine phosphatases. It is probable that the PTP-like domains in tensin and auxilin mediate binding interactions with phosphorylated polypeptides; they may therefore represent members of a distinct class of phosphopeptide recognition domain.

Full Text

The Full Text of this article is available as a PDF (2.0 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Altschul S. F., Boguski M. S., Gish W., Wootton J. C. Issues in searching molecular sequence databases. Nat Genet. 1994 Feb;6(2):119–129. doi: 10.1038/ng0294-119. [DOI] [PubMed] [Google Scholar]
  2. Barford D., Flint A. J., Tonks N. K. Crystal structure of human protein tyrosine phosphatase 1B. Science. 1994 Mar 11;263(5152):1397–1404. [PubMed] [Google Scholar]
  3. Barford D., Jia Z., Tonks N. K. Protein tyrosine phosphatases take off. Nat Struct Biol. 1995 Dec;2(12):1043–1053. doi: 10.1038/nsb1295-1043. [DOI] [PubMed] [Google Scholar]
  4. Barton G. J. An efficient algorithm to locate all locally optimal alignments between two sequences allowing for gaps. Comput Appl Biosci. 1993 Dec;9(6):729–734. doi: 10.1093/bioinformatics/9.6.729. [DOI] [PubMed] [Google Scholar]
  5. Barton G. J. Protein multiple sequence alignment and flexible pattern matching. Methods Enzymol. 1990;183:403–428. doi: 10.1016/0076-6879(90)83027-7. [DOI] [PubMed] [Google Scholar]
  6. Birney E., Thompson J. D., Gibson T. J. PairWise and SearchWise: finding the optimal alignment in a simultaneous comparison of a protein profile against all DNA translation frames. Nucleic Acids Res. 1996 Jul 15;24(14):2730–2739. doi: 10.1093/nar/24.14.2730. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Bockholt S. M., Otey C. A., Glenney J. R., Jr, Burridge K. Localization of a 215-kDa tyrosine-phosphorylated protein that cross-reacts with tensin antibodies. Exp Cell Res. 1992 Nov;203(1):39–46. doi: 10.1016/0014-4827(92)90037-9. [DOI] [PubMed] [Google Scholar]
  8. Chuang J. Z., Lin D. C., Lin S. Molecular cloning, expression, and mapping of the high affinity actin-capping domain of chicken cardiac tensin. J Cell Biol. 1995 Mar;128(6):1095–1109. doi: 10.1083/jcb.128.6.1095. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Davis S., Lu M. L., Lo S. H., Lin S., Butler J. A., Druker B. J., Roberts T. M., An Q., Chen L. B. Presence of an SH2 domain in the actin-binding protein tensin. Science. 1991 May 3;252(5006):712–715. doi: 10.1126/science.1708917. [DOI] [PubMed] [Google Scholar]
  10. Haring M. A., Siderius M., Jonak C., Hirt H., Walton K. M., Musgrave A. Tyrosine phosphatase signalling in a lower plant: cell-cycle and oxidative stress-regulated expression of the Chlamydomonas eugametos VH-PTP13 gene. Plant J. 1995 Jun;7(6):981–988. doi: 10.1046/j.1365-313x.1995.07060981.x. [DOI] [PubMed] [Google Scholar]
  11. Jia Z., Barford D., Flint A. J., Tonks N. K. Structural basis for phosphotyrosine peptide recognition by protein tyrosine phosphatase 1B. Science. 1995 Jun 23;268(5218):1754–1758. doi: 10.1126/science.7540771. [DOI] [PubMed] [Google Scholar]
  12. Jungbluth A., Eckerskorn C., Gerisch G., Lottspeich F., Stocker S., Schweiger A. Stress-induced tyrosine phosphorylation of actin in Dictyostelium cells and localization of the phosphorylation site to tyrosine-53 adjacent to the DNase I binding loop. FEBS Lett. 1995 Nov 13;375(1-2):87–90. doi: 10.1016/0014-5793(95)01165-b. [DOI] [PubMed] [Google Scholar]
  13. Mallet L., Bussereau F., Jacquet M. A 43.5 kb segment of yeast chromosome XIV, which contains MFA2, MEP2, CAP/SRV2, NAM9, FKB1/FPR1/RBP1, MOM22 and CPT1, predicts an adenosine deaminase gene and 14 new open reading frames. Yeast. 1995 Sep 30;11(12):1195–1209. doi: 10.1002/yea.320111210. [DOI] [PubMed] [Google Scholar]
  14. Murphy J. E., Hanover J. A., Froehlich M., DuBois G., Keen J. H. Clathrin assembly protein AP-3 is phosphorylated and glycosylated on the 50-kDa structural domain. J Biol Chem. 1994 Aug 19;269(33):21346–21352. [PubMed] [Google Scholar]
  15. Tan X., Stover D. R., Walsh K. A. Demonstration of protein tyrosine phosphatase activity in the second of two homologous domains of CD45. J Biol Chem. 1993 Apr 5;268(10):6835–6838. [PubMed] [Google Scholar]
  16. Ungewickell E., Ungewickell H., Holstein S. E., Lindner R., Prasad K., Barouch W., Martin B., Greene L. E., Eisenberg E. Role of auxilin in uncoating clathrin-coated vesicles. Nature. 1995 Dec 7;378(6557):632–635. doi: 10.1038/378632a0. [DOI] [PubMed] [Google Scholar]
  17. Walton K. M., Dixon J. E. Protein tyrosine phosphatases. Annu Rev Biochem. 1993;62:101–120. doi: 10.1146/annurev.bi.62.070193.000533. [DOI] [PubMed] [Google Scholar]
  18. Wilkins J. A., Lin S. A re-examination of the interaction of vinculin with actin. J Cell Biol. 1986 Mar;102(3):1085–1092. doi: 10.1083/jcb.102.3.1085. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Wishart M. J., Denu J. M., Williams J. A., Dixon J. E. A single mutation converts a novel phosphotyrosine binding domain into a dual-specificity phosphatase. J Biol Chem. 1995 Nov 10;270(45):26782–26785. doi: 10.1074/jbc.270.45.26782. [DOI] [PubMed] [Google Scholar]
  20. Yuvaniyama J., Denu J. M., Dixon J. E., Saper M. A. Crystal structure of the dual specificity protein phosphatase VHR. Science. 1996 May 31;272(5266):1328–1331. doi: 10.1126/science.272.5266.1328. [DOI] [PubMed] [Google Scholar]

Articles from Protein Science : A Publication of the Protein Society are provided here courtesy of The Protein Society

RESOURCES