Skip to main content
Protein Science : A Publication of the Protein Society logoLink to Protein Science : A Publication of the Protein Society
. 1996 Dec;5(12):2623–2637. doi: 10.1002/pro.5560051225

Helix propagation and N-cap propensities of the amino acids measured in alanine-based peptides in 40 volume percent trifluoroethanol.

C A Rohl 1, A Chakrabartty 1, R L Baldwin 1
PMCID: PMC2143311  PMID: 8976571

Abstract

The helix propagation and N-cap propensities of the amino acids have been measured in alanine-based peptides in 40 volume percent trifluoroethanol (40% TFE) to determine if this helix-stabilizing solvent uniformly affects all amino acids. The propensities in 40% TFE are compared with revised values of the helix parameters of alanine-based peptides in water. Revision of the propensities in water is the result of redefining the capping statistical weights and evaluating the helix nucleation constant with N-capping explicitly included in the helix-coil model. The propagation propensities of all amino acids increase in 40% TFE relative to water, but the increases are highly variable. In water, all beta-branched and beta-substituted amino acids are helix breakers. In 40% TFE, the propagation propensities of the nonpolar amino acids increase greatly, leaving charged and neutral polar, beta-substituted amino acids as helix breakers. Glycine and proline are strong helix breakers in both solvents. Free energy differences for helix propagation (delta delta G) between alanine and other nonpolar amino acids are twice as large in water as predicted from side-chain conformational entropies, but delta delta G values in 40% TFE are close to those predicted from side-chain entropies. This dependence of delta delta G on the solvent points to a specific role of water in determining the relative helix propensities of the nonpolar amino acids. The N-cap propensities converge toward a common value in 40% TFE, suggesting that differential solvation by water contributes to the diversity of N-cap values shown by the amino acids.

Full Text

The Full Text of this article is available as a PDF (1.4 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Avbelj F., Moult J. Role of electrostatic screening in determining protein main chain conformational preferences. Biochemistry. 1995 Jan 24;34(3):755–764. doi: 10.1021/bi00003a008. [DOI] [PubMed] [Google Scholar]
  2. Blaber M., Zhang X. J., Lindstrom J. D., Pepiot S. D., Baase W. A., Matthews B. W. Determination of alpha-helix propensity within the context of a folded protein. Sites 44 and 131 in bacteriophage T4 lysozyme. J Mol Biol. 1994 Jan 14;235(2):600–624. doi: 10.1006/jmbi.1994.1016. [DOI] [PubMed] [Google Scholar]
  3. Blaber M., Zhang X. J., Matthews B. W. Structural basis of amino acid alpha helix propensity. Science. 1993 Jun 11;260(5114):1637–1640. doi: 10.1126/science.8503008. [DOI] [PubMed] [Google Scholar]
  4. Brandts J. F., Kaplan L. J. Derivative sspectroscopy applied to tyrosyl chromophores. Studies on ribonuclease, lima bean inhibitors, insulin, and pancreatic trypsin inhibitor. Biochemistry. 1973 May 8;12(10):2011–2024. doi: 10.1021/bi00734a027. [DOI] [PubMed] [Google Scholar]
  5. Chakrabartty A., Doig A. J., Baldwin R. L. Helix capping propensities in peptides parallel those in proteins. Proc Natl Acad Sci U S A. 1993 Dec 1;90(23):11332–11336. doi: 10.1073/pnas.90.23.11332. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Chakrabartty A., Kortemme T., Baldwin R. L. Helix propensities of the amino acids measured in alanine-based peptides without helix-stabilizing side-chain interactions. Protein Sci. 1994 May;3(5):843–852. doi: 10.1002/pro.5560030514. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Chen Y. H., Yang J. T., Chau K. H. Determination of the helix and beta form of proteins in aqueous solution by circular dichroism. Biochemistry. 1974 Jul 30;13(16):3350–3359. doi: 10.1021/bi00713a027. [DOI] [PubMed] [Google Scholar]
  8. Creamer T. P., Rose G. D. Side-chain entropy opposes alpha-helix formation but rationalizes experimentally determined helix-forming propensities. Proc Natl Acad Sci U S A. 1992 Jul 1;89(13):5937–5941. doi: 10.1073/pnas.89.13.5937. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Doig A. J., Chakrabartty A., Klingler T. M., Baldwin R. L. Determination of free energies of N-capping in alpha-helices by modification of the Lifson-Roig helix-coil therapy to include N- and C-capping. Biochemistry. 1994 Mar 22;33(11):3396–3403. doi: 10.1021/bi00177a033. [DOI] [PubMed] [Google Scholar]
  10. Groebke K., Renold P., Tsang K. Y., Allen T. J., McClure K. F., Kemp D. S. Template-nucleated alanine-lysine helices are stabilized by position-dependent interactions between the lysine side chain and the helix barrel. Proc Natl Acad Sci U S A. 1996 Apr 30;93(9):4025–4029. doi: 10.1073/pnas.93.9.4025. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Hamada D., Kuroda Y., Tanaka T., Goto Y. High helical propensity of the peptide fragments derived from beta-lactoglobulin, a predominantly beta-sheet protein. J Mol Biol. 1995 Dec 8;254(4):737–746. doi: 10.1006/jmbi.1995.0651. [DOI] [PubMed] [Google Scholar]
  12. Harper E. T., Rose G. D. Helix stop signals in proteins and peptides: the capping box. Biochemistry. 1993 Aug 3;32(30):7605–7609. doi: 10.1021/bi00081a001. [DOI] [PubMed] [Google Scholar]
  13. Horovitz A., Matthews J. M., Fersht A. R. Alpha-helix stability in proteins. II. Factors that influence stability at an internal position. J Mol Biol. 1992 Sep 20;227(2):560–568. doi: 10.1016/0022-2836(92)90907-2. [DOI] [PubMed] [Google Scholar]
  14. Huyghues-Despointes B. M., Scholtz J. M., Baldwin R. L. Effect of a single aspartate on helix stability at different positions in a neutral alanine-based peptide. Protein Sci. 1993 Oct;2(10):1604–1611. doi: 10.1002/pro.5560021006. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Muñoz V., Serrano L. Elucidating the folding problem of helical peptides using empirical parameters. Nat Struct Biol. 1994 Jun;1(6):399–409. doi: 10.1038/nsb0694-399. [DOI] [PubMed] [Google Scholar]
  16. Nelson J. W., Kallenbach N. R. Persistence of the alpha-helix stop signal in the S-peptide in trifluoroethanol solutions. Biochemistry. 1989 Jun 13;28(12):5256–5261. doi: 10.1021/bi00438a050. [DOI] [PubMed] [Google Scholar]
  17. Nelson J. W., Kallenbach N. R. Stabilization of the ribonuclease S-peptide alpha-helix by trifluoroethanol. Proteins. 1986 Nov;1(3):211–217. doi: 10.1002/prot.340010303. [DOI] [PubMed] [Google Scholar]
  18. Padmanabhan S., York E. J., Stewart J. M., Baldwin R. L. Helix propensities of basic amino acids increase with the length of the side-chain. J Mol Biol. 1996 Apr 5;257(3):726–734. doi: 10.1006/jmbi.1996.0197. [DOI] [PubMed] [Google Scholar]
  19. Presta L. G., Rose G. D. Helix signals in proteins. Science. 1988 Jun 17;240(4859):1632–1641. doi: 10.1126/science.2837824. [DOI] [PubMed] [Google Scholar]
  20. Richardson J. S., Richardson D. C. Amino acid preferences for specific locations at the ends of alpha helices. Science. 1988 Jun 17;240(4859):1648–1652. doi: 10.1126/science.3381086. [DOI] [PubMed] [Google Scholar]
  21. Richmond T. J., Richards F. M. Packing of alpha-helices: geometrical constraints and contact areas. J Mol Biol. 1978 Mar 15;119(4):537–555. doi: 10.1016/0022-2836(78)90201-2. [DOI] [PubMed] [Google Scholar]
  22. Rohl C. A., Scholtz J. M., York E. J., Stewart J. M., Baldwin R. L. Kinetics of amide proton exchange in helical peptides of varying chain lengths. Interpretation by the Lifson-Roig equation. Biochemistry. 1992 Feb 11;31(5):1263–1269. doi: 10.1021/bi00120a001. [DOI] [PubMed] [Google Scholar]
  23. Scholtz J. M., Qian H., Robbins V. H., Baldwin R. L. The energetics of ion-pair and hydrogen-bonding interactions in a helical peptide. Biochemistry. 1993 Sep 21;32(37):9668–9676. doi: 10.1021/bi00088a019. [DOI] [PubMed] [Google Scholar]
  24. Scholtz J. M., Qian H., York E. J., Stewart J. M., Baldwin R. L. Parameters of helix-coil transition theory for alanine-based peptides of varying chain lengths in water. Biopolymers. 1991 Nov;31(13):1463–1470. doi: 10.1002/bip.360311304. [DOI] [PubMed] [Google Scholar]
  25. Segawa S., Fukuno T., Fujiwara K., Noda Y. Local structures in unfolded lysozyme and correlation with secondary structures in the native conformation: helix-forming or -breaking propensity of peptide segments. Biopolymers. 1991 Apr;31(5):497–509. doi: 10.1002/bip.360310505. [DOI] [PubMed] [Google Scholar]
  26. Serrano L., Neira J. L., Sancho J., Fersht A. R. Effect of alanine versus glycine in alpha-helices on protein stability. Nature. 1992 Apr 2;356(6368):453–455. doi: 10.1038/356453a0. [DOI] [PubMed] [Google Scholar]
  27. Storrs R. W., Truckses D., Wemmer D. E. Helix propagation in trifluoroethanol solutions. Biopolymers. 1992 Dec;32(12):1695–1702. doi: 10.1002/bip.360321211. [DOI] [PubMed] [Google Scholar]
  28. Waterhous D. V., Johnson W. C., Jr Importance of environment in determining secondary structure in proteins. Biochemistry. 1994 Mar 1;33(8):2121–2128. doi: 10.1021/bi00174a019. [DOI] [PubMed] [Google Scholar]
  29. Yang A. S., Sharp K. A., Honig B. Analysis of the heat capacity dependence of protein folding. J Mol Biol. 1992 Oct 5;227(3):889–900. doi: 10.1016/0022-2836(92)90229-d. [DOI] [PubMed] [Google Scholar]

Articles from Protein Science : A Publication of the Protein Society are provided here courtesy of The Protein Society

RESOURCES