Skip to main content
Protein Science : A Publication of the Protein Society logoLink to Protein Science : A Publication of the Protein Society
. 1996 Dec;5(12):2583–2591. doi: 10.1002/pro.5560051221

Thermal stability of the three domains of streptokinase studied by circular dichroism and nuclear magnetic resonance.

F Conejero-Lara 1, J Parrado 1, A I Azuaga 1, R A Smith 1, C P Ponting 1, C M Dobson 1
PMCID: PMC2143313  PMID: 8976567

Abstract

Streptococcus equisimilis streptokinase (SK) is a single-chain protein of 414 residues that is used extensively in the clinical treatment of acute myocardial infarction due to its ability to activate human plasminogen (Plg). The mechanism by which this occurs is poorly understood due to the lack of structural details concerning both molecules and their complex. We reported recently (Parrado J et al., 1996, Protein Sci 5:693-704) that SK is composed of three structural domains (A, B, and C) with a C-terminal tail that is relatively unstructured. Here, we report thermal unfolding experiments, monitored by CD and NMR, using samples of intact SK, five isolated SK fragments, and two two-chain noncovalent complexes between complementary fragments of the protein. These experiments have allowed the unfolding processes of specific domains of the protein to be monitored and their relative stabilities and interdomain interactions to be characterized. Results demonstrate that SK can exist in a number of partially unfolded states, in which individual domains of the protein behave as single cooperative units. Domain B unfolds cooperatively in the first thermal transition at approximately 46 degrees C and its stability is largely independent of the presence of the other domains. The high-temperature transition in intact SK (at approximately 63 degrees C) corresponds to the unfolding of both domains A and C. Thermal stability of domain C is significantly increased by its isolation from the rest of the chain. By contrast, cleavage of the Phe 63-Ala 64 peptide bond within domain A causes thermal destabilization of this domain. The two resulting domain portions (A1 and A2) adopt unstructured conformations when separated. A1 binds with high affinity to all fragments that contain the A2 portion, with a concomitant restoration of the native-like fold of domain A. This result demonstrates that the mechanism whereby A1 stimulates the plasminogen activator activities of complementary SK fragments is the reconstitution of the native-like structure of domain A.

Full Text

The Full Text of this article is available as a PDF (957.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bakker A. H., Weening-Verhoeff E. J., Verheijen J. H. The role of the lysyl binding site of tissue-type plasminogen activator in the interaction with a forming fibrin clot. J Biol Chem. 1995 May 26;270(21):12355–12360. doi: 10.1074/jbc.270.21.12355. [DOI] [PubMed] [Google Scholar]
  2. Brandts J. F., Hu C. Q., Lin L. N., Mos M. T. A simple model for proteins with interacting domains. Applications to scanning calorimetry data. Biochemistry. 1989 Oct 17;28(21):8588–8596. doi: 10.1021/bi00447a048. [DOI] [PubMed] [Google Scholar]
  3. Brockway W. J., Castellino F. J. A characterization of native streptokinase and altered streptokinase isolated from a human plasminogen activator complex. Biochemistry. 1974 May 7;13(10):2063–2070. doi: 10.1021/bi00707a010. [DOI] [PubMed] [Google Scholar]
  4. Freire E., Murphy K. P., Sanchez-Ruiz J. M., Galisteo M. L., Privalov P. L. The molecular basis of cooperativity in protein folding. Thermodynamic dissection of interdomain interactions in phosphoglycerate kinase. Biochemistry. 1992 Jan 14;31(1):250–256. doi: 10.1021/bi00116a034. [DOI] [PubMed] [Google Scholar]
  5. Jackson K. W., Malke H., Gerlach D., Ferretti J. J., Tang J. Active streptokinase from the cloned gene in Streptococcus sanguis is without the carboxyl-terminal 32 residues. Biochemistry. 1986 Jan 14;25(1):108–114. doi: 10.1021/bi00349a016. [DOI] [PubMed] [Google Scholar]
  6. Kurochkin I. V., Procyk R., Bishop P. D., Yee V. C., Teller D. C., Ingham K. C., Medved L. V. Domain structure, stability and domain-domain interactions in recombinant factor XIII. J Mol Biol. 1995 Apr 28;248(2):414–430. doi: 10.1016/s0022-2836(95)80060-3. [DOI] [PubMed] [Google Scholar]
  7. Marshall J. M., Brown A. J., Ponting C. P. Conformational studies of human plasminogen and plasminogen fragments: evidence for a novel third conformation of plasminogen. Biochemistry. 1994 Mar 29;33(12):3599–3606. doi: 10.1021/bi00178a017. [DOI] [PubMed] [Google Scholar]
  8. McClintock D. K., Bell P. H. The mechanism of activation of human plasminogen by streptokinase. Biochem Biophys Res Commun. 1971 May 7;43(3):694–702. doi: 10.1016/0006-291x(71)90670-x. [DOI] [PubMed] [Google Scholar]
  9. Misselwitz R., Kraft R., Kostka S., Fabian H., Welfle K., Pfeil W., Welfle H., Gerlach D. Limited proteolysis of streptokinase and properties of some fragments. Int J Biol Macromol. 1992 Apr;14(2):107–116. doi: 10.1016/0141-8130(92)90007-u. [DOI] [PubMed] [Google Scholar]
  10. Novokhatny V. V., Ingham K. C., Medved L. V. Domain structure and domain-domain interactions of recombinant tissue plasminogen activator. J Biol Chem. 1991 Jul 15;266(20):12994–13002. [PubMed] [Google Scholar]
  11. Nowak U. K., Cooper A., Saunders D., Smith R. A., Dobson C. M. Unfolding studies of the protease domain of urokinase-type plasminogen activator: the existence of partly folded states and stable subdomains. Biochemistry. 1994 Mar 15;33(10):2951–2960. doi: 10.1021/bi00176a027. [DOI] [PubMed] [Google Scholar]
  12. Parrado J., Conejero-Lara F., Smith R. A., Marshall J. M., Ponting C. P., Dobson C. M. The domain organization of streptokinase: nuclear magnetic resonance, circular dichroism, and functional characterization of proteolytic fragments. Protein Sci. 1996 Apr;5(4):693–704. doi: 10.1002/pro.5560050414. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Polverino de Laureto P., De Filippis V., Scaramella E., Zambonin M., Fontana A. Limited proteolysis of lysozyme in trifluoroethanol. Isolation and characterization of a partially active enzyme derivative. Eur J Biochem. 1995 Jun 1;230(2):779–787. [PubMed] [Google Scholar]
  14. Privalov P. L. Stability of proteins: small globular proteins. Adv Protein Chem. 1979;33:167–241. doi: 10.1016/s0065-3233(08)60460-x. [DOI] [PubMed] [Google Scholar]
  15. Radek J. T., Castellino F. J. Conformational properties of streptokinase. J Biol Chem. 1989 Jun 15;264(17):9915–9922. [PubMed] [Google Scholar]
  16. Reed G. L., Lin L. F., Parhami-Seren B., Kussie P. Identification of a plasminogen binding region in streptokinase that is necessary for the creation of a functional streptokinase-plasminogen activator complex. Biochemistry. 1995 Aug 15;34(32):10266–10271. doi: 10.1021/bi00032a021. [DOI] [PubMed] [Google Scholar]
  17. Rodríguez P., Fuentes P., Barro M., Alvarez J. G., Muñoz E., Collen D., Lijnen H. R. Structural domains of streptokinase involved in the interaction with plasminogen. Eur J Biochem. 1995 Apr 1;229(1):83–90. doi: 10.1111/j.1432-1033.1995.tb20441.x. [DOI] [PubMed] [Google Scholar]
  18. Schägger H., von Jagow G. Tricine-sodium dodecyl sulfate-polyacrylamide gel electrophoresis for the separation of proteins in the range from 1 to 100 kDa. Anal Biochem. 1987 Nov 1;166(2):368–379. doi: 10.1016/0003-2697(87)90587-2. [DOI] [PubMed] [Google Scholar]
  19. Shi G. Y., Chang B. I., Chen S. M., Wu D. H., Wu H. L. Function of streptokinase fragments in plasminogen activation. Biochem J. 1994 Nov 15;304(Pt 1):235–241. doi: 10.1042/bj3040235. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Siefring G. E., Jr, Castellino F. J. Interaction of streptokinase with plasminogen. Isolation and characterization of a streptokinase degradation product. J Biol Chem. 1976 Jul 10;251(13):3913–3920. [PubMed] [Google Scholar]
  21. Sun A. Q., Yüksel K. U., Gracy R. W. Limited proteolysis of triose-phosphate isomerase and characterization of the catalytically active peptide complex. J Biol Chem. 1993 Dec 25;268(36):26872–26878. [PubMed] [Google Scholar]
  22. Tasayco M. L., Chao K. NMR study of the reconstitution of the beta-sheet of thioredoxin by fragment complementation. Proteins. 1995 May;22(1):41–44. doi: 10.1002/prot.340220106. [DOI] [PubMed] [Google Scholar]
  23. Teuten A. J., Broadhurst R. W., Smith R. A., Dobson C. M. Characterization of structural and folding properties of streptokinase by n.m.r. spectroscopy. Biochem J. 1993 Mar 1;290(Pt 2):313–319. doi: 10.1042/bj2900313. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Teuten A. J., Smith R. A., Dobson C. M. Domain interactions in human plasminogen studied by proton NMR. FEBS Lett. 1991 Jan 14;278(1):17–22. doi: 10.1016/0014-5793(91)80073-c. [DOI] [PubMed] [Google Scholar]
  25. Vysotchin A., Medved L. V., Ingham K. C. Domain structure and domain-domain interactions in human coagulation factor IX. J Biol Chem. 1993 Apr 25;268(12):8436–8446. [PubMed] [Google Scholar]
  26. Young K. C., Shi G. Y., Chang Y. F., Chang B. I., Chang L. C., Lai M. D., Chuang W. J., Wu H. L. Interaction of streptokinase and plasminogen. Studied with truncated streptokinase peptides. J Biol Chem. 1995 Dec 8;270(49):29601–29606. doi: 10.1074/jbc.270.49.29601. [DOI] [PubMed] [Google Scholar]
  27. de Prat Gay G., Fersht A. R. Generation of a family of protein fragments for structure-folding studies. 1. Folding complementation of two fragments of chymotrypsin inhibitor-2 formed by cleavage at its unique methionine residue. Biochemistry. 1994 Jun 28;33(25):7957–7963. doi: 10.1021/bi00191a024. [DOI] [PubMed] [Google Scholar]

Articles from Protein Science : A Publication of the Protein Society are provided here courtesy of The Protein Society

RESOURCES