Skip to main content
Protein Science : A Publication of the Protein Society logoLink to Protein Science : A Publication of the Protein Society
. 1996 Dec;5(12):2438–2452.

Protein clefts in molecular recognition and function.

R A Laskowski 1, N M Luscombe 1, M B Swindells 1, J M Thornton 1
PMCID: PMC2143314  PMID: 8976552

Abstract

One of the primary factors determining how proteins interact with other molecules is the size of clefts in the protein's surface. In enzymes, for example, the active site is often characterized by a particularly large and deep cleft, while interactions between the molecules of a protein dimer tend to involve approximately planar surfaces. Here we present an analysis of how cleft volumes in proteins relate to their molecular interactions and functions. Three separate datasets are used, representing enzyme-ligand binding, protein-protein dimerization and antibody-antigen complexes. We find that, in single-chain enzymes, the ligand is bound in the largest cleft in over 83% of the proteins. Usually the largest cleft is considerably larger than the others, suggesting that size is a functional requirement. Thus, in many cases, the likely active sites of an enzyme can be identified using purely geometrical criteria alone. In other cases, where there is no predominantly large cleft, chemical interactions are required for pinpointing the correct location. In antibody-antigen interactions the antibody usually presents a large cleft for antigen binding. In contrast, protein-protein interactions in homodimers are characterized by approximately planar interfaces with several clefts involved. However, the largest cleft in each subunit still tends to be involved.

Full Text

The Full Text of this article is available as a PDF (9.6 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Anderson C. M., Zucker F. H., Steitz T. A. Space-filling models of kinase clefts and conformation changes. Science. 1979 Apr 27;204(4391):375–380. doi: 10.1126/science.220706. [DOI] [PubMed] [Google Scholar]
  2. Barford D., Schwabe J. W., Oikonomakos N. G., Acharya K. R., Hajdu J., Papageorgiou A. C., Martin J. L., Knott J. C., Vasella A., Johnson L. N. Channels at the catalytic site of glycogen phosphorylase b: binding and kinetic studies with the beta-glycosidase inhibitor D-gluconohydroximo-1,5-lactone N-phenylurethane. Biochemistry. 1988 Sep 6;27(18):6733–6741. doi: 10.1021/bi00418a014. [DOI] [PubMed] [Google Scholar]
  3. Bernstein F. C., Koetzle T. F., Williams G. J., Meyer E. F., Jr, Brice M. D., Rodgers J. R., Kennard O., Shimanouchi T., Tasumi M. The Protein Data Bank: a computer-based archival file for macromolecular structures. J Mol Biol. 1977 May 25;112(3):535–542. doi: 10.1016/s0022-2836(77)80200-3. [DOI] [PubMed] [Google Scholar]
  4. Brändeén C. I. Relation between structure and function of alpha/beta-proteins. Q Rev Biophys. 1980 Aug;13(3):317–338. doi: 10.1017/s0033583500001712. [DOI] [PubMed] [Google Scholar]
  5. Cappalonga A. M., Alexander R. S., Christianson D. W. Structural comparison of sulfodiimine and sulfonamide inhibitors in their complexes with zinc enzymes. J Biol Chem. 1992 Sep 25;267(27):19192–19197. doi: 10.2210/pdb1cps/pdb. [DOI] [PubMed] [Google Scholar]
  6. Colloc'h N., Mornon J. P. A new tool for the qualitative and quantitative analysis of protein surfaces using B-spline and density of surface neighborhood. J Mol Graph. 1990 Sep;8(3):133-40, 146. doi: 10.1016/0263-7855(90)80053-i. [DOI] [PubMed] [Google Scholar]
  7. Delaney J. S. Finding and filling protein cavities using cellular logic operations. J Mol Graph. 1992 Sep;10(3):174-7, 163. doi: 10.1016/0263-7855(92)80052-f. [DOI] [PubMed] [Google Scholar]
  8. DesJarlais R. L., Sheridan R. P., Seibel G. L., Dixon J. S., Kuntz I. D., Venkataraghavan R. Using shape complementarity as an initial screen in designing ligands for a receptor binding site of known three-dimensional structure. J Med Chem. 1988 Apr;31(4):722–729. doi: 10.1021/jm00399a006. [DOI] [PubMed] [Google Scholar]
  9. Ho C. M., Marshall G. R. Cavity search: an algorithm for the isolation and display of cavity-like binding regions. J Comput Aided Mol Des. 1990 Dec;4(4):337–354. doi: 10.1007/BF00117400. [DOI] [PubMed] [Google Scholar]
  10. Holden H. M., Tronrud D. E., Monzingo A. F., Weaver L. H., Matthews B. W. Slow- and fast-binding inhibitors of thermolysin display different modes of binding: crystallographic analysis of extended phosphonamidate transition-state analogues. Biochemistry. 1987 Dec 29;26(26):8542–8553. doi: 10.1021/bi00400a008. [DOI] [PubMed] [Google Scholar]
  11. Hubbard S. J., Gross K. H., Argos P. Intramolecular cavities in globular proteins. Protein Eng. 1994 May;7(5):613–626. doi: 10.1093/protein/7.5.613. [DOI] [PubMed] [Google Scholar]
  12. Johnson L. N. Glycogen phosphorylase: control by phosphorylation and allosteric effectors. FASEB J. 1992 Mar;6(6):2274–2282. doi: 10.1096/fasebj.6.6.1544539. [DOI] [PubMed] [Google Scholar]
  13. Jones S., Thornton J. M. Protein-protein interactions: a review of protein dimer structures. Prog Biophys Mol Biol. 1995;63(1):31–65. doi: 10.1016/0079-6107(94)00008-w. [DOI] [PubMed] [Google Scholar]
  14. Kleywegt G. J., Jones T. A. Detection, delineation, measurement and display of cavities in macromolecular structures. Acta Crystallogr D Biol Crystallogr. 1994 Mar 1;50(Pt 2):178–185. doi: 10.1107/S0907444993011333. [DOI] [PubMed] [Google Scholar]
  15. Kuntz I. D., Blaney J. M., Oatley S. J., Langridge R., Ferrin T. E. A geometric approach to macromolecule-ligand interactions. J Mol Biol. 1982 Oct 25;161(2):269–288. doi: 10.1016/0022-2836(82)90153-x. [DOI] [PubMed] [Google Scholar]
  16. Laskowski R. A. SURFNET: a program for visualizing molecular surfaces, cavities, and intermolecular interactions. J Mol Graph. 1995 Oct;13(5):323-30, 307-8. doi: 10.1016/0263-7855(95)00073-9. [DOI] [PubMed] [Google Scholar]
  17. Lauble H., Kennedy M. C., Beinert H., Stout C. D. Crystal structures of aconitase with isocitrate and nitroisocitrate bound. Biochemistry. 1992 Mar 17;31(10):2735–2748. doi: 10.1021/bi00125a014. [DOI] [PubMed] [Google Scholar]
  18. Levitt D. G., Banaszak L. J. POCKET: a computer graphics method for identifying and displaying protein cavities and their surrounding amino acids. J Mol Graph. 1992 Dec;10(4):229–234. doi: 10.1016/0263-7855(92)80074-n. [DOI] [PubMed] [Google Scholar]
  19. Lewis R. A. Clefts and binding sites in protein receptors. Methods Enzymol. 1991;202:126–156. doi: 10.1016/0076-6879(91)02010-7. [DOI] [PubMed] [Google Scholar]
  20. Navia M. A., McKeever B. M., Springer J. P., Lin T. Y., Williams H. R., Fluder E. M., Dorn C. P., Hoogsteen K. Structure of human neutrophil elastase in complex with a peptide chloromethyl ketone inhibitor at 1.84-A resolution. Proc Natl Acad Sci U S A. 1989 Jan;86(1):7–11. doi: 10.1073/pnas.86.1.7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Orengo C. A., Flores T. P., Taylor W. R., Thornton J. M. Identification and classification of protein fold families. Protein Eng. 1993 Jul;6(5):485–500. doi: 10.1093/protein/6.5.485. [DOI] [PubMed] [Google Scholar]
  22. Peters K. P., Fauck J., Frömmel C. The automatic search for ligand binding sites in proteins of known three-dimensional structure using only geometric criteria. J Mol Biol. 1996 Feb 16;256(1):201–213. doi: 10.1006/jmbi.1996.0077. [DOI] [PubMed] [Google Scholar]
  23. Rashin A. A., Iofin M., Honig B. Internal cavities and buried waters in globular proteins. Biochemistry. 1986 Jun 17;25(12):3619–3625. doi: 10.1021/bi00360a021. [DOI] [PubMed] [Google Scholar]
  24. Scapin G., Grubmeyer C., Sacchettini J. C. Crystal structure of orotate phosphoribosyltransferase. Biochemistry. 1994 Feb 15;33(6):1287–1294. doi: 10.1021/bi00172a001. [DOI] [PubMed] [Google Scholar]
  25. Smart O. S., Goodfellow J. M., Wallace B. A. The pore dimensions of gramicidin A. Biophys J. 1993 Dec;65(6):2455–2460. doi: 10.1016/S0006-3495(93)81293-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Stehle T., Claiborne A., Schulz G. E. NADH binding site and catalysis of NADH peroxidase. Eur J Biochem. 1993 Jan 15;211(1-2):221–226. doi: 10.1111/j.1432-1033.1993.tb19889.x. [DOI] [PubMed] [Google Scholar]
  27. Swindells M. B. A procedure for detecting structural domains in proteins. Protein Sci. 1995 Jan;4(1):103–112. doi: 10.1002/pro.5560040113. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Williams M. A., Goodfellow J. M., Thornton J. M. Buried waters and internal cavities in monomeric proteins. Protein Sci. 1994 Aug;3(8):1224–1235. doi: 10.1002/pro.5560030808. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Wilson D. K., Quiocho F. A. A pre-transition-state mimic of an enzyme: X-ray structure of adenosine deaminase with bound 1-deazaadenosine and zinc-activated water. Biochemistry. 1993 Feb 23;32(7):1689–1694. doi: 10.1021/bi00058a001. [DOI] [PubMed] [Google Scholar]
  30. Wu T. P., Padmanabhan K., Tulinsky A., Mulichak A. M. The refined structure of the epsilon-aminocaproic acid complex of human plasminogen kringle 4. Biochemistry. 1991 Oct 29;30(43):10589–10594. doi: 10.1021/bi00107a030. [DOI] [PubMed] [Google Scholar]
  31. Yang W., Hendrickson W. A., Crouch R. J., Satow Y. Structure of ribonuclease H phased at 2 A resolution by MAD analysis of the selenomethionyl protein. Science. 1990 Sep 21;249(4975):1398–1405. doi: 10.1126/science.2169648. [DOI] [PubMed] [Google Scholar]
  32. Young L., Jernigan R. L., Covell D. G. A role for surface hydrophobicity in protein-protein recognition. Protein Sci. 1994 May;3(5):717–729. doi: 10.1002/pro.5560030501. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Protein Science : A Publication of the Protein Society are provided here courtesy of The Protein Society

RESOURCES