Skip to main content
Protein Science : A Publication of the Protein Society logoLink to Protein Science : A Publication of the Protein Society
. 1996 Dec;5(12):2521–2531. doi: 10.1002/pro.5560051215

Physicochemical basis for the rapid time-action of LysB28ProB29-insulin: dissociation of a protein-ligand complex.

D L Bakaysa 1, J Radziuk 1, H A Havel 1, M L Brader 1, S Li 1, S W Dodd 1, J M Beals 1, A H Pekar 1, D N Brems 1
PMCID: PMC2143322  PMID: 8976561

Abstract

The rate-limiting step for the absorption of insulin solutions after subcutaneous injection is considered to be the dissociation of self-associated hexamers to monomers. To accelerate this absorption process, insulin analogues have been designed that possess full biological activity and yet have greatly diminished tendencies to self-associate. Sedimentation velocity and static light scattering results show that the presence of zinc and phenolic ligands (m-cresol and/or phenol) cause one such insulin analogue, LysB28ProB29-human insulin (LysPro), to associate into a hexameric complex. Most importantly, this ligand-bound hexamer retains its rapid-acting pharmacokinetics and pharmacodynamics. The dissociation of the stabilized hexameric analogue has been studied in vitro using static light scattering as well as in vivo using a female pig pharmacodynamic model. Retention of rapid time-action is hypothesized to be due to altered subunit packing within the hexamer. Evidence for modified monomer-monomer interactions has been observed in the X-ray crystal structure of a zinc LysPro hexamer (Ciszak E et al., 1995, Structure 3:615-622). The solution state behavior of LysPro, reported here, has been interpreted with respect to the crystal structure results. In addition, the phenolic ligand binding differences between LysPro and insulin have been compared using isothermal titrating calorimetry and visible absorption spectroscopy of cobalt-containing hexamers. These studies establish that rapid-acting insulin analogues of this type can be stabilized in solution via the formation of hexamer complexes with altered dissociation properties.

Full Text

The Full Text of this article is available as a PDF (1.8 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Baker E. N., Blundell T. L., Cutfield J. F., Cutfield S. M., Dodson E. J., Dodson G. G., Hodgkin D. M., Hubbard R. E., Isaacs N. W., Reynolds C. D. The structure of 2Zn pig insulin crystals at 1.5 A resolution. Philos Trans R Soc Lond B Biol Sci. 1988 Jul 6;319(1195):369–456. doi: 10.1098/rstb.1988.0058. [DOI] [PubMed] [Google Scholar]
  2. Bentley G., Dodson E., Dodson G., Hodgkin D., Mercola D. Structure of insulin in 4-zinc insulin. Nature. 1976 May 13;261(5556):166–168. doi: 10.1038/261166a0. [DOI] [PubMed] [Google Scholar]
  3. Birnbaum D. T., Dodd S. W., Saxberg B. E., Varshavsky A. D., Beals J. M. Hierarchical modeling of phenolic ligand binding to 2Zn--insulin hexamers. Biochemistry. 1996 Apr 30;35(17):5366–5378. doi: 10.1021/bi9600557. [DOI] [PubMed] [Google Scholar]
  4. Brader M. L., Kaarsholm N. C., Lee R. W., Dunn M. F. Characterization of the R-state insulin hexamer and its derivatives. The hexamer is stabilized by heterotropic ligand binding interactions. Biochemistry. 1991 Jul 9;30(27):6636–6645. doi: 10.1021/bi00241a002. [DOI] [PubMed] [Google Scholar]
  5. Brange J. Chemical stability of insulin. 4. Mechanisms and kinetics of chemical transformations in pharmaceutical formulation. Acta Pharm Nord. 1992;4(4):209–222. [PubMed] [Google Scholar]
  6. Ciszak E., Beals J. M., Frank B. H., Baker J. C., Carter N. D., Smith G. D. Role of C-terminal B-chain residues in insulin assembly: the structure of hexameric LysB28ProB29-human insulin. Structure. 1995 Jun 15;3(6):615–622. doi: 10.1016/s0969-2126(01)00195-2. [DOI] [PubMed] [Google Scholar]
  7. Derewenda U., Derewenda Z., Dodson E. J., Dodson G. G., Reynolds C. D., Smith G. D., Sparks C., Swenson D. Phenol stabilizes more helix in a new symmetrical zinc insulin hexamer. Nature. 1989 Apr 13;338(6216):594–596. doi: 10.1038/338594a0. [DOI] [PubMed] [Google Scholar]
  8. FREDERICQ E. The association of insulin molecular units in aqueous solutions. Arch Biochem Biophys. 1956 Nov;65(1):218–228. doi: 10.1016/0003-9861(56)90189-8. [DOI] [PubMed] [Google Scholar]
  9. Farid N. A., Atkins L. M., Becker G. W., Dinner A., Heiney R. E., Miner D. J., Riggin R. M. Liquid chromatographic control of the identity, purity and "potency" of biomolecules used as drugs. J Pharm Biomed Anal. 1989;7(2):185–188. doi: 10.1016/0731-7085(89)80082-2. [DOI] [PubMed] [Google Scholar]
  10. Frank B. H., Pekar A. H., Veros A. J. Insulin and proinsulin conformation in solution. Diabetes. 1972;21(2 Suppl):486–491. doi: 10.2337/diab.21.2.s486. [DOI] [PubMed] [Google Scholar]
  11. Goldman J., Carpenter F. H. Zinc binding, circular dichroism, and equilibrium sedimentation studies on insulin (bovine) and several of its derivatives. Biochemistry. 1974 Oct 22;13(22):4566–4574. doi: 10.1021/bi00719a015. [DOI] [PubMed] [Google Scholar]
  12. Hvidt S. Insulin association in neutral solutions studied by light scattering. Biophys Chem. 1991 Feb;39(2):205–213. doi: 10.1016/0301-4622(91)85023-j. [DOI] [PubMed] [Google Scholar]
  13. Jeffrey P. D., Coates J. H. An equilibrium ultracentrifuge study of the self-association of bovine insulin. Biochemistry. 1966 Feb;5(2):489–498. doi: 10.1021/bi00866a014. [DOI] [PubMed] [Google Scholar]
  14. Kaarsholm N. C., Ko H. C., Dunn M. F. Comparison of solution structural flexibility and zinc binding domains for insulin, proinsulin, and miniproinsulin. Biochemistry. 1989 May 16;28(10):4427–4435. doi: 10.1021/bi00436a046. [DOI] [PubMed] [Google Scholar]
  15. Krüger P., Gilge G., Cabuk Y., Wollmer A. Cooperativity and intermediate states in the T----R-structural transformation of insulin. Biol Chem Hoppe Seyler. 1990 Aug;371(8):669–673. doi: 10.1515/bchm3.1990.371.2.669. [DOI] [PubMed] [Google Scholar]
  16. MONOD J., WYMAN J., CHANGEUX J. P. ON THE NATURE OF ALLOSTERIC TRANSITIONS: A PLAUSIBLE MODEL. J Mol Biol. 1965 May;12:88–118. doi: 10.1016/s0022-2836(65)80285-6. [DOI] [PubMed] [Google Scholar]
  17. Mark A. E., Jeffrey P. D. The self-association of zinc-free bovine insulin. Four model patterns and their significance. Biol Chem Hoppe Seyler. 1990 Dec;371(12):1165–1174. doi: 10.1515/bchm3.1990.371.2.1165. [DOI] [PubMed] [Google Scholar]
  18. Pramming S., Lauritzen T., Thorsteinsson B., Johansen K., Binder C. Absorption of soluble and isophane semi-synthetic human and porcine insulin in insulin-dependent diabetic subjects. Acta Endocrinol (Copenh) 1984 Feb;105(2):215–220. doi: 10.1530/acta.0.1050215. [DOI] [PubMed] [Google Scholar]
  19. Renscheidt H., Strassburger W., Glatter U., Wollmer A., Dodson G. G., Mercola D. A. A solution equivalent of the 2Zn----4Zn transformation of insulin in the crystal. Eur J Biochem. 1984 Jul 2;142(1):7–14. doi: 10.1111/j.1432-1033.1984.tb08243.x. [DOI] [PubMed] [Google Scholar]
  20. Roy M., Brader M. L., Lee R. W., Kaarsholm N. C., Hansen J. F., Dunn M. F. Spectroscopic signatures of the T to R conformational transition in the insulin hexamer. J Biol Chem. 1989 Nov 15;264(32):19081–19085. [PubMed] [Google Scholar]
  21. Smith G. D., Ciszak E. The structure of a complex of hexameric insulin and 4'-hydroxyacetanilide. Proc Natl Acad Sci U S A. 1994 Sep 13;91(19):8851–8855. doi: 10.1073/pnas.91.19.8851. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Smith G. D., Dodson G. G. The structure of a rhombohedral R6 insulin hexamer that binds phenol. Biopolymers. 1992 Apr;32(4):441–445. doi: 10.1002/bip.360320422. [DOI] [PubMed] [Google Scholar]
  23. Thomas B., Wollmer A. Cobalt probing of structural alternatives for insulin in solution. Biol Chem Hoppe Seyler. 1989 Dec;370(12):1235–1244. doi: 10.1515/bchm3.1989.370.2.1235. [DOI] [PubMed] [Google Scholar]

Articles from Protein Science : A Publication of the Protein Society are provided here courtesy of The Protein Society

RESOURCES