Abstract
Lanthanide luminescence was used to examine the effects of posttranslational adenylylation on the metal binding sites of Escherichia coli glutamine synthetase (GS). These studies revealed the presence of two lanthanide ion binding sites of GS of either adenylylation extrema. Individual emission decay lifetimes were obtained in both H2O and D2O solvent systems, allowing for the determination of the number of water molecules coordinated to each bound Eu3+. The results indicate that there are 4.3 +/- 0.5 and 4.6 +/- 0.5 water molecules coordinated to Eu3+ bound to the n1 site of unadenylylated enzyme, GS0, and fully adenylylated enzyme, GS12, respectively, and that there are 2.6 +/- 0.5 water molecules coordinated to Eu3+ at site n2 for both GS0 and GS12. Energy transfer measurements between the lanthanide donor-acceptor pair Eu3+ and Nd3+, obtained an intermetal distance measurement of 12.1 +/- 1.5 A. Distances between a Tb3+ ion at site n2 and tryptophan residues were also performed with the use of single-tryptophan mutant forms of E. coli GS. The dissociation constant for lanthanide ion binding to site n1 was observed to decrease from Kd = 0.35 +/- 0.09 microM for GS0 to Kd = 0.06 +/- 0.02 microM for GS12. The dissociation constant for lanthanide ion binding to site n2 remained unchanged as a function of adenylylation state; Kd = 3.8 +/- 0.9 microM and Kd = 2.6 +/- 0.7 microM for GS0 and GS12, respectively. Competition experiments indicate that Mn2+ affinity at site n1 decreases as a function of increasing adenylylation state, from Kd = 0.05 +/- 0.02 microM for GS0 to Kd = 0.35 +/- 0.09 microM for GS12. Mn2+ affinity at site n2 remains unchanged (Kd = 5.3 +/- 1.3 microM for GS0 and Kd = 4.0 +/- 1.0 microM for GS12). The observed divalent metal ion affinities, which are affected by the adenylylation state, agrees with other steady-state substrate experiments (Abell LM, Villafranca JJ, 1991, Biochemistry 30:1413-1418), supporting the hypothesis that adenylylation regulates GS by altering substrate and metal ion affinities.
Full Text
The Full Text of this article is available as a PDF (1.3 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Abell L. M., Villafranca J. J. Effect of metal ions and adenylylation state on the internal thermodynamics of phosphoryl transfer in the Escherichia coli glutamine synthetase reaction. Biochemistry. 1991 Feb 5;30(5):1413–1418. doi: 10.1021/bi00219a035. [DOI] [PubMed] [Google Scholar]
- Almassy R. J., Janson C. A., Hamlin R., Xuong N. H., Eisenberg D. Novel subunit-subunit interactions in the structure of glutamine synthetase. 1986 Sep 25-Oct 1Nature. 323(6086):304–309. doi: 10.1038/323304a0. [DOI] [PubMed] [Google Scholar]
- Atkins W. M., Villafranca J. J. Time-resolved fluorescence studies of tryptophan mutants of Escherichia coli glutamine synthetase: conformational analysis of intermediates and transition-state complexes. Protein Sci. 1992 Mar;1(3):342–355. doi: 10.1002/pro.5560010306. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Breen P. J., Hild E. K., Horrocks W. D., Jr Spectroscopic studies of metal ion binding to a tryptophan-containing parvalbumin. Biochemistry. 1985 Sep 10;24(19):4991–4997. doi: 10.1021/bi00340a005. [DOI] [PubMed] [Google Scholar]
- Brittain H. G., Richardson F. S., Martin R. B. Terbium (III) emission as a probe of calcium(II) binding sites in proteins. J Am Chem Soc. 1976 Dec 8;98(25):8255–8260. doi: 10.1021/ja00441a060. [DOI] [PubMed] [Google Scholar]
- Bruno J., Horrocks W. D., Jr, Zauhar R. J. Europium(III) luminescence and tyrosine to terbium(III) energy-transfer studies of invertebrate (octopus) calmodulin. Biochemistry. 1992 Aug 11;31(31):7016–7026. doi: 10.1021/bi00146a002. [DOI] [PubMed] [Google Scholar]
- Burroughs S. E., Eisenman G., Horrocks W. D., Jr Characterization of the five-fold Ca2+ binding site of satellite tobacco necrosis virus using Eu3+ luminescence spectroscopy: a marked size-selectivity among rare earth ions. Biophys Chem. 1992 Apr;42(3):249–256. doi: 10.1016/0301-4622(92)80017-y. [DOI] [PubMed] [Google Scholar]
- Burroughs S. E., Horrocks W. D., Jr, Ren H., Klee C. B. Characterization of the lanthanide ion-binding properties of calcineurin-B using laser-induced luminescence spectroscopy. Biochemistry. 1994 Aug 30;33(34):10428–10436. doi: 10.1021/bi00200a026. [DOI] [PubMed] [Google Scholar]
- Clark D. D., Villafranca J. J. Isotope-exchange enhancement studies of Escherichia coli glutamine synthetase. Biochemistry. 1985 Sep 10;24(19):5147–5152. doi: 10.1021/bi00340a029. [DOI] [PubMed] [Google Scholar]
- Colombo G., Villafranca J. J. Amino acid sequence of Escherichia coli glutamine synthetase deduced from the DNA nucleotide sequence. J Biol Chem. 1986 Aug 15;261(23):10587–10591. [PubMed] [Google Scholar]
- Denton M. D., Ginsburg A. Conformational changes in glutamine synthetase from Escherichia coli. I. The binding of Mn2+ in relation to some aspects of the enzyme structure and activity. Biochemistry. 1969 Apr;8(4):1714–1725. doi: 10.1021/bi00832a055. [DOI] [PubMed] [Google Scholar]
- Eads C. D., Mulqueen P., Horrocks W. D., Jr, Villafranca J. J. Comparative study of glutamine synthetase bound lanthanide(III) ions using NMR relaxation and lanthanide(III) luminescence techniques. Biochemistry. 1985 Feb 26;24(5):1221–1226. doi: 10.1021/bi00326a025. [DOI] [PubMed] [Google Scholar]
- Gibbs E. J., Ransom S. C., Cuppett S., Villafranca J. J. Mn-Mn interaction in adenylylated and unadenylylated glutamine synthetase. Biochem Biophys Res Commun. 1984 May 16;120(3):939–945. doi: 10.1016/s0006-291x(84)80197-7. [DOI] [PubMed] [Google Scholar]
- Horrocks W. D., Jr Luminescence spectroscopy. Methods Enzymol. 1993;226:495–538. doi: 10.1016/0076-6879(93)26023-3. [DOI] [PubMed] [Google Scholar]
- Hunt J. B., Smyrniotis P. Z., Ginsburg A., Stadtman E. R. Metal ion requirement by glutamine synthetase of Escherichia coli in catalysis of gamma-glutamyl transfer. Arch Biochem Biophys. 1975 Jan;166(1):102–124. doi: 10.1016/0003-9861(75)90370-7. [DOI] [PubMed] [Google Scholar]
- McNemar L. S., Lin W. Y., Eads C. D., Atkins W. M., Dombrosky P., Villafranca J. J. Terbium(III) luminescence study of the spatial relationship of tryptophan residues to the two metal ion binding sites of Escherichia coli glutamine synthetase. Biochemistry. 1991 Apr 9;30(14):3417–3421. doi: 10.1021/bi00228a009. [DOI] [PubMed] [Google Scholar]
- Meek T. D., Johnson K. A., Villafranca J. J. Escherichia coli glutamine synthetase. Determination of rate-limiting steps by rapid-quench and isotope partitioning experiments. Biochemistry. 1982 Apr 27;21(9):2158–2167. doi: 10.1021/bi00538a027. [DOI] [PubMed] [Google Scholar]
- Miller R. E., Shelton E., Stadtman E. R. Zinc-induced paracrystalline aggregation of glutamine synthetase. Arch Biochem Biophys. 1974 Jul;163(1):155–171. doi: 10.1016/0003-9861(74)90465-2. [DOI] [PubMed] [Google Scholar]
- Rhee M. J., Sudnick D. R., Arkle V. K., Horrocks W. D., Jr Lanthanide ion luminescence probes. Characterization of metal ion binding sites and intermetal energy transfer distance measurements in calcium-binding proteins. 1. Parvalbumin. Biochemistry. 1981 Jun 9;20(12):3328–3334. doi: 10.1021/bi00515a002. [DOI] [PubMed] [Google Scholar]
- Roseman J. E., Levine R. L. Purification of a protease from Escherichia coli with specificity for oxidized glutamine synthetase. J Biol Chem. 1987 Feb 15;262(5):2101–2110. [PubMed] [Google Scholar]
- Valentine R. C., Shapiro B. M., Stadtman E. R. Regulation of glutamine synthetase. XII. Electron microscopy of the enzyme from Escherichia coli. Biochemistry. 1968 Jun;7(6):2143–2152. doi: 10.1021/bi00846a017. [DOI] [PubMed] [Google Scholar]
- Villafranca J. J., Ash D. E., Wedler F. C. Manganese (II) and substrate interaction with unadenylylated glutamine synthetase (Escherichia coli w). II. Electron paramagnetic resonance and nuclear magnetic resonance studies of enzyme-bound manganese(II) with substrates and a potential transition-state analogue, methionine sulfoximine. Biochemistry. 1976 Feb 10;15(3):544–553. doi: 10.1021/bi00648a014. [DOI] [PubMed] [Google Scholar]
- Villafranca J. J., Ash D. E., Wedler F. C. Manganese(II) and substrate interaction with unadenylylated glutamine synthetase (Escherichia coli w). I. Temperature and frequency dependent nuclear magnetic resonance studies. Biochemistry. 1976 Feb 10;15(3):536–543. doi: 10.1021/bi00648a013. [DOI] [PubMed] [Google Scholar]
- Yamashita M. M., Almassy R. J., Janson C. A., Cascio D., Eisenberg D. Refined atomic model of glutamine synthetase at 3.5 A resolution. J Biol Chem. 1989 Oct 25;264(30):17681–17690. doi: 10.2210/pdb2gls/pdb. [DOI] [PubMed] [Google Scholar]
- Yang C. H., Söll D. Studies of transfer RNA tertiary structure of singlet-singlet energy transfer. Proc Natl Acad Sci U S A. 1974 Jul;71(7):2838–2842. doi: 10.1073/pnas.71.7.2838. [DOI] [PMC free article] [PubMed] [Google Scholar]