Skip to main content
Protein Science : A Publication of the Protein Society logoLink to Protein Science : A Publication of the Protein Society
. 1996 Dec;5(12):2429–2437. doi: 10.1002/pro.5560051205

Crystal structure of dUTP pyrophosphatase from feline immunodeficiency virus.

G S Prasad 1, E A Stura 1, D E McRee 1, G S Laco 1, C Hasselkus-Light 1, J H Elder 1, C D Stout 1
PMCID: PMC2143329  PMID: 8976551

Abstract

We have determined the crystal structure of dUTP pyrophosphatase (dUTPase) from feline immunodeficiency virus (FIV) at 1.9 A resolution. The structure has been solved by the multiple isomorphous replacement (MIR) method using a P6(3) crystal form. The results show that the enzyme is a trimer of 14.3 kDa subunits with marked structural similarity to E. coli dUTPase. In both enzymes the C-terminal strand of an anti-parallel beta-barrel participates in the beta-sheet of an adjacent subunit to form an interdigitated, biologically functional trimer. In the P6(3) crystal form one trimer packs on the 6(3) screw-axis and another on the threefold axis so that there are two independent monomers per asymmetric unit. A Mg2+ ion is coordinated by three asparate residues on the threefold axis of each trimer. Alignment of 17 viral, prokaryotic, and eukaryotic dUTPase sequences reveals five conserved motifs. Four of these map onto the interface between pairs of subunits, defining a putative active site region; the fifth resides in the C-terminal 16 residues, which is disordered in the crystals. Conserved motifs from all three subunits are required to create a given active site. With respect to viral protein expression, it is particularly interesting that the gene for dUTPase (DU) resides in the middle of the Pol gene, the enzyme cassette of the retroviral genome. Other enzymes encoded in the Pol polyprotein, including protease (PR), reverse transcriptase (RT), and most likely integrase (IN), are dimeric enzymes, which implies that the stoichiometry of expression of active trimeric dUTPase is distinct from the other Pol-encoded enzymes. Additionally, due to structural constraints, it is unlikely that dUTPase can attain an active form prior to cleavage from the polyprotein.

Full Text

The Full Text of this article is available as a PDF (8.2 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ackley C. D., Yamamoto J. K., Levy N., Pedersen N. C., Cooper M. D. Immunologic abnormalities in pathogen-free cats experimentally infected with feline immunodeficiency virus. J Virol. 1990 Nov;64(11):5652–5655. doi: 10.1128/jvi.64.11.5652-5655.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Berry M. B., Meador B., Bilderback T., Liang P., Glaser M., Phillips G. N., Jr The closed conformation of a highly flexible protein: the structure of E. coli adenylate kinase with bound AMP and AMPPNP. Proteins. 1994 Jul;19(3):183–198. doi: 10.1002/prot.340190304. [DOI] [PubMed] [Google Scholar]
  3. Cedergren-Zeppezauer E. S., Larsson G., Nyman P. O., Dauter Z., Wilson K. S. Crystal structure of a dUTPase. Nature. 1992 Feb 20;355(6362):740–743. doi: 10.1038/355740a0. [DOI] [PubMed] [Google Scholar]
  4. Dreusicke D., Schulz G. E. The glycine-rich loop of adenylate kinase forms a giant anion hole. FEBS Lett. 1986 Nov 24;208(2):301–304. doi: 10.1016/0014-5793(86)81037-7. [DOI] [PubMed] [Google Scholar]
  5. Elder J. H., Lerner D. L., Hasselkus-Light C. S., Fontenot D. J., Hunter E., Luciw P. A., Montelaro R. C., Phillips T. R. Distinct subsets of retroviruses encode dUTPase. J Virol. 1992 Mar;66(3):1791–1794. doi: 10.1128/jvi.66.3.1791-1794.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Howard A. J., Nielsen C., Xuong N. H. Software for a diffractometer with multiwire area detector. Methods Enzymol. 1985;114:452–472. doi: 10.1016/0076-6879(85)14030-9. [DOI] [PubMed] [Google Scholar]
  7. Lerner D. L., Wagaman P. C., Phillips T. R., Prospero-Garcia O., Henriksen S. J., Fox H. S., Bloom F. E., Elder J. H. Increased mutation frequency of feline immunodeficiency virus lacking functional deoxyuridine-triphosphatase. Proc Natl Acad Sci U S A. 1995 Aug 1;92(16):7480–7484. doi: 10.1073/pnas.92.16.7480. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. McClure M. A., Johnson M. S., Feng D. F., Doolittle R. F. Sequence comparisons of retroviral proteins: relative rates of change and general phylogeny. Proc Natl Acad Sci U S A. 1988 Apr;85(8):2469–2473. doi: 10.1073/pnas.85.8.2469. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Mol C. D., Harris J. M., McIntosh E. M., Tainer J. A. Human dUTP pyrophosphatase: uracil recognition by a beta hairpin and active sites formed by three separate subunits. Structure. 1996 Sep 15;4(9):1077–1092. doi: 10.1016/s0969-2126(96)00114-1. [DOI] [PubMed] [Google Scholar]
  10. Pedersen N. C., Ho E. W., Brown M. L., Yamamoto J. K. Isolation of a T-lymphotropic virus from domestic cats with an immunodeficiency-like syndrome. Science. 1987 Feb 13;235(4790):790–793. doi: 10.1126/science.3643650. [DOI] [PubMed] [Google Scholar]
  11. Saraste M., Sibbald P. R., Wittinghofer A. The P-loop--a common motif in ATP- and GTP-binding proteins. Trends Biochem Sci. 1990 Nov;15(11):430–434. doi: 10.1016/0968-0004(90)90281-f. [DOI] [PubMed] [Google Scholar]
  12. Slabaugh M. B., Roseman N. A. Retroviral protease-like gene in the vaccinia virus genome. Proc Natl Acad Sci U S A. 1989 Jun;86(11):4152–4155. doi: 10.1073/pnas.86.11.4152. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Steagall W. K., Robek M. D., Perry S. T., Fuller F. J., Payne S. L. Incorporation of uracil into viral DNA correlates with reduced replication of EIAV in macrophages. Virology. 1995 Jul 10;210(2):302–313. doi: 10.1006/viro.1995.1347. [DOI] [PubMed] [Google Scholar]
  14. Studier F. W., Rosenberg A. H., Dunn J. J., Dubendorff J. W. Use of T7 RNA polymerase to direct expression of cloned genes. Methods Enzymol. 1990;185:60–89. doi: 10.1016/0076-6879(90)85008-c. [DOI] [PubMed] [Google Scholar]
  15. Talbott R. L., Sparger E. E., Lovelace K. M., Fitch W. M., Pedersen N. C., Luciw P. A., Elder J. H. Nucleotide sequence and genomic organization of feline immunodeficiency virus. Proc Natl Acad Sci U S A. 1989 Aug;86(15):5743–5747. doi: 10.1073/pnas.86.15.5743. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Threadgill D. S., Steagall W. K., Flaherty M. T., Fuller F. J., Perry S. T., Rushlow K. E., Le Grice S. F., Payne S. L. Characterization of equine infectious anemia virus dUTPase: growth properties of a dUTPase-deficient mutant. J Virol. 1993 May;67(5):2592–2600. doi: 10.1128/jvi.67.5.2592-2600.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Turelli P., Pétursson G., Guiguen F., Mornex J. F., Vigne R., Quérat G. Replication properties of dUTPase-deficient mutants of caprine and ovine lentiviruses. J Virol. 1996 Feb;70(2):1213–1217. doi: 10.1128/jvi.70.2.1213-1217.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Wagaman P. C., Hasselkus-Light C. S., Henson M., Lerner D. L., Phillips T. R., Elder J. H. Molecular cloning and characterization of deoxyuridine triphosphatase from feline immunodeficiency virus (FIV). Virology. 1993 Oct;196(2):451–457. doi: 10.1006/viro.1993.1501. [DOI] [PubMed] [Google Scholar]
  19. Wickham T. J., Davis T., Granados R. R., Shuler M. L., Wood H. A. Screening of insect cell lines for the production of recombinant proteins and infectious virus in the baculovirus expression system. Biotechnol Prog. 1992 Sep-Oct;8(5):391–396. doi: 10.1021/bp00017a003. [DOI] [PubMed] [Google Scholar]
  20. Yamamoto J. K., Sparger E., Ho E. W., Andersen P. R., O'Connor T. P., Mandell C. P., Lowenstine L., Munn R., Pedersen N. C. Pathogenesis of experimentally induced feline immunodeficiency virus infection in cats. Am J Vet Res. 1988 Aug;49(8):1246–1258. [PubMed] [Google Scholar]

Articles from Protein Science : A Publication of the Protein Society are provided here courtesy of The Protein Society

RESOURCES