Abstract
The reverse transcriptase (RT) of the human immunodeficiency virus type 1 (HIV-1) is composed of two subunits of 66 and 51 kDa in a 1 to 1 ratio. Because dimerization is a prerequisite for enzymatic activity, interference with the dimerization process could constitute an alternative antiviral strategy for RT inhibition. Here we describe an in vitro assay for the study of the dimerization state of HIV-1 reverse transcriptase based on chemical crosslinking of the subunits with dimethylsuberimidate. Crosslinking results in the formation of covalent bonds between the subunits, so that the crosslinked species can be resolved by denaturing gel electrophoresis. Crosslinked RT species with molecular weight greater than that of the dimeric form accumulate during a 1-15-min time course. Initial evidence suggests that those high molecular weight species represent trimers and tetramers and may be the result of intramolecular crosslinking of the subunits of a higher-order RT oligomer. A peptide that corresponds to part of the tryptophan repeat motif in the connection domain of HIV-1 RT inhibits crosslink formation as well as enzymatic activity. The crosslinking assay thus allows the investigation of the effect of inhibitors on the dimerization of HIV-1 RT.
Full Text
The Full Text of this article is available as a PDF (5.2 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Baillon J. G., Nashed N. T., Kumar A., Wilson S. H., Jerina D. M. A leucine zipper-like motif may mediate HIV reverse transcriptase subunit binding. New Biol. 1991 Oct;3(10):1015–1019. [PubMed] [Google Scholar]
- Bathurst I. C., Moen L. K., Lujan M. A., Gibson H. L., Feucht P. H., Pichuantes S., Craik C. S., Santi D. V., Barr P. J. Characterization of the human immunodeficiency virus type-1 reverse transcriptase enzyme produced in yeast. Biochem Biophys Res Commun. 1990 Sep 14;171(2):589–595. doi: 10.1016/0006-291x(90)91187-w. [DOI] [PubMed] [Google Scholar]
- Becerra S. P., Kumar A., Lewis M. S., Widen S. G., Abbotts J., Karawya E. M., Hughes S. H., Shiloach J., Wilson S. H., Lewis M. S. Protein-protein interactions of HIV-1 reverse transcriptase: implication of central and C-terminal regions in subunit binding. Biochemistry. 1991 Dec 17;30(50):11707–11719. doi: 10.1021/bi00114a015. [DOI] [PubMed] [Google Scholar]
- Bhikhabhai R., Joelson T., Unge T., Strandberg B., Carlsson T., Lövgren S. Purification, characterization and crystallization of recombinant HIV-1 reverse transcriptase. J Chromatogr. 1992 Jun 26;604(1):157–170. doi: 10.1016/0021-9673(92)85540-a. [DOI] [PubMed] [Google Scholar]
- Chandra A., Gerber T., Kaul S., Wolf C., Demirhan I., Chandra P. Serological relationship between reverse transcriptases from human T-cell lymphotropic viruses defined by monoclonal antibodies. Evidence for two forms of reverse transcriptases in the AIDS-associated virus, HTLV-III/LAV. FEBS Lett. 1986 May 12;200(2):327–332. doi: 10.1016/0014-5793(86)81162-0. [DOI] [PubMed] [Google Scholar]
- Cook P. R. A model for reverse transcription by a dimeric enzyme. J Gen Virol. 1993 Apr;74(Pt 4):691–697. doi: 10.1099/0022-1317-74-4-691. [DOI] [PubMed] [Google Scholar]
- Davies G. E., Stark G. R. Use of dimethyl suberimidate, a cross-linking reagent, in studying the subunit structure of oligomeric proteins. Proc Natl Acad Sci U S A. 1970 Jul;66(3):651–656. doi: 10.1073/pnas.66.3.651. [DOI] [PMC free article] [PubMed] [Google Scholar]
- De Clercq E. HIV inhibitors targeted at the reverse transcriptase. AIDS Res Hum Retroviruses. 1992 Feb;8(2):119–134. doi: 10.1089/aid.1992.8.119. [DOI] [PubMed] [Google Scholar]
- Debyser Z., Pauwels R., Andries K., Desmyter J., Engelborghs Y., Janssen P. A., De Clercq E. Allosteric inhibition of human immunodeficiency virus type 1 reverse transcriptase by tetrahydroimidazo[4,5,1-jk][1,4]benzodiazepin-2(1H)-one and -thione compounds. Mol Pharmacol. 1992 Jan;41(1):203–208. [PubMed] [Google Scholar]
- Ding J., Jacobo-Molina A., Tantillo C., Lu X., Nanni R. G., Arnold E. Buried surface analysis of HIV-1 reverse transcriptase p66/p51 heterodimer and its interaction with dsDNA template/primer. J Mol Recognit. 1994 Jun;7(2):157–161. doi: 10.1002/jmr.300070212. [DOI] [PubMed] [Google Scholar]
- Divita G., Müller B., Immendörfer U., Gautel M., Rittinger K., Restle T., Goody R. S. Kinetics of interaction of HIV reverse transcriptase with primer/template. Biochemistry. 1993 Aug 10;32(31):7966–7971. doi: 10.1021/bi00082a018. [DOI] [PubMed] [Google Scholar]
- Divita G., Restle T., Goody R. S., Chermann J. C., Baillon J. G. Inhibition of human immunodeficiency virus type 1 reverse transcriptase dimerization using synthetic peptides derived from the connection domain. J Biol Chem. 1994 May 6;269(18):13080–13083. [PubMed] [Google Scholar]
- Goel R., Beard W. A., Kumar A., Casas-Finet J. R., Strub M. P., Stahl S. J., Lewis M. S., Bebenek K., Becerra S. P., Kunkel T. A. Structure/function studies of HIV-1(1) reverse transcriptase: dimerization-defective mutant L289K. Biochemistry. 1993 Dec 7;32(48):13012–13018. doi: 10.1021/bi00211a009. [DOI] [PubMed] [Google Scholar]
- Goff S. P. Retroviral reverse transcriptase: synthesis, structure, and function. J Acquir Immune Defic Syndr. 1990;3(8):817–831. [PubMed] [Google Scholar]
- Hansen J., Schulze T., Mellert W., Moelling K. Identification and characterization of HIV-specific RNase H by monoclonal antibody. EMBO J. 1988 Jan;7(1):239–243. doi: 10.1002/j.1460-2075.1988.tb02805.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ho D. D., Neumann A. U., Perelson A. S., Chen W., Leonard J. M., Markowitz M. Rapid turnover of plasma virions and CD4 lymphocytes in HIV-1 infection. Nature. 1995 Jan 12;373(6510):123–126. doi: 10.1038/373123a0. [DOI] [PubMed] [Google Scholar]
- Jacobo-Molina A., Ding J., Nanni R. G., Clark A. D., Jr, Lu X., Tantillo C., Williams R. L., Kamer G., Ferris A. L., Clark P. Crystal structure of human immunodeficiency virus type 1 reverse transcriptase complexed with double-stranded DNA at 3.0 A resolution shows bent DNA. Proc Natl Acad Sci U S A. 1993 Jul 1;90(13):6320–6324. doi: 10.1073/pnas.90.13.6320. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Johnson M. S., McClure M. A., Feng D. F., Gray J., Doolittle R. F. Computer analysis of retroviral pol genes: assignment of enzymatic functions to specific sequences and homologies with nonviral enzymes. Proc Natl Acad Sci U S A. 1986 Oct;83(20):7648–7652. doi: 10.1073/pnas.83.20.7648. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jonckheere H., Taymans J. M., Balzarini J., Velázquez S., Camarasa M. J., Desmyter J., De Clercq E., Anné J. Resistance of HIV-1 reverse transcriptase against [2',5'-bis-O-(tert-butyldimethylsilyl)-3'-spiro-5''-(4''-amino-1'',2''- oxathiole-2'',2''-dioxide)] (TSAO) derivatives is determined by the mutation Glu138-->Lys on the p51 subunit. J Biol Chem. 1994 Oct 14;269(41):25255–25258. [PubMed] [Google Scholar]
- Kohlstaedt L. A., Wang J., Friedman J. M., Rice P. A., Steitz T. A. Crystal structure at 3.5 A resolution of HIV-1 reverse transcriptase complexed with an inhibitor. Science. 1992 Jun 26;256(5065):1783–1790. doi: 10.1126/science.1377403. [DOI] [PubMed] [Google Scholar]
- Lebowitz J., Kar S., Braswell E., McPherson S., Richard D. L. Human immunodeficiency virus-1 reverse transcriptase heterodimer stability. Protein Sci. 1994 Sep;3(9):1374–1382. doi: 10.1002/pro.5560030903. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lightfoote M. M., Coligan J. E., Folks T. M., Fauci A. S., Martin M. A., Venkatesan S. Structural characterization of reverse transcriptase and endonuclease polypeptides of the acquired immunodeficiency syndrome retrovirus. J Virol. 1986 Nov;60(2):771–775. doi: 10.1128/jvi.60.2.771-775.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Merluzzi V. J., Hargrave K. D., Labadia M., Grozinger K., Skoog M., Wu J. C., Shih C. K., Eckner K., Hattox S., Adams J. Inhibition of HIV-1 replication by a nonnucleoside reverse transcriptase inhibitor. Science. 1990 Dec 7;250(4986):1411–1413. doi: 10.1126/science.1701568. [DOI] [PubMed] [Google Scholar]
- Pantaleo G., Graziosi C., Demarest J. F., Butini L., Montroni M., Fox C. H., Orenstein J. M., Kotler D. P., Fauci A. S. HIV infection is active and progressive in lymphoid tissue during the clinically latent stage of disease. Nature. 1993 Mar 25;362(6418):355–358. doi: 10.1038/362355a0. [DOI] [PubMed] [Google Scholar]
- Patel S. S., Hingorani M. M. Oligomeric structure of bacteriophage T7 DNA primase/helicase proteins. J Biol Chem. 1993 May 15;268(14):10668–10675. [PubMed] [Google Scholar]
- Pauwels R., Andries K., Desmyter J., Schols D., Kukla M. J., Breslin H. J., Raeymaeckers A., Van Gelder J., Woestenborghs R., Heykants J. Potent and selective inhibition of HIV-1 replication in vitro by a novel series of TIBO derivatives. Nature. 1990 Feb 1;343(6257):470–474. doi: 10.1038/343470a0. [DOI] [PubMed] [Google Scholar]
- Peters K., Richards F. M. Chemical cross-linking: reagents and problems in studies of membrane structure. Annu Rev Biochem. 1977;46:523–551. doi: 10.1146/annurev.bi.46.070177.002515. [DOI] [PubMed] [Google Scholar]
- Restle T., Müller B., Goody R. S. Dimerization of human immunodeficiency virus type 1 reverse transcriptase. A target for chemotherapeutic intervention. J Biol Chem. 1990 Jun 5;265(16):8986–8988. [PubMed] [Google Scholar]
- Unge T., Ahola H., Bhikhabhai R., Bäckbro K., Lövgren S., Fenyö E. M., Honigman A., Panet A., Gronowitz J. S., Strandberg B. Expression, purification, and crystallization of the HIV-1 reverse transcriptase (RT). AIDS Res Hum Retroviruses. 1990 Nov;6(11):1297–1303. doi: 10.1089/aid.1990.6.1297. [DOI] [PubMed] [Google Scholar]
- Wei X., Ghosh S. K., Taylor M. E., Johnson V. A., Emini E. A., Deutsch P., Lifson J. D., Bonhoeffer S., Nowak M. A., Hahn B. H. Viral dynamics in human immunodeficiency virus type 1 infection. Nature. 1995 Jan 12;373(6510):117–122. doi: 10.1038/373117a0. [DOI] [PubMed] [Google Scholar]