Skip to main content
Protein Science : A Publication of the Protein Society logoLink to Protein Science : A Publication of the Protein Society
. 1996 Feb;5(2):331–340. doi: 10.1002/pro.5560050217

Posttranslational processing of recombinant human interferon-gamma in animal expression systems.

D C James 1, M H Goldman 1, M Hoare 1, N Jenkins 1, R W Oliver 1, B N Green 1, R B Freedman 1
PMCID: PMC2143336  PMID: 8745411

Abstract

We have characterized the heterogeneity of recombinant human interferon-gamma (IFN-gamma) produced by three expression systems: Chinese hamster ovary cells, the mammary gland of transgenic mice, and baculovirus-infected Spodopera frugiperda (Sf9) insect cells. Analyses of whole IFN-gamma proteins by electrospray ionization-mass spectrometry (ESI-MS) from each recombinant source revealed heterogeneous populations of IFN-gamma molecules resulting from variations in N-glycosylation and C-terminal polypeptide cleavages. A series of more specific analyses assisted interpretation of maximum entropy deconvoluted ESI-mass spectra of whole IFN-gamma proteins; MALDI-MS analyses of released, desialylated N-glycans and of deglycosylated IFN-gamma polypeptides were combined with analyses of 2-aminobenzamide labeled sialylated N-glycans by cation-exchange high-performance liquid chromatography. These analyses enabled identification of specific polypeptide cleavage sites and characterization of associated N-glycans. Production of recombinant IFN-gamma in the mammalian expression systems yielded polypeptides C-terminally truncated at dibasic amino acid sites. Mammalian cell derived IFN-gamma molecules displayed oligosaccharides with monosaccharide compositions equivalent to complex, sialylated, or high-mannose type N-glycans. In contrast, IFN-gamma derived from baculovirus-infected Sf9 insect cells was truncated further toward the C-terminus and was associated with neutral (nonsialylated) N-glycans. These data demonstrate the profound influence of host cell type on posttranslational processing of recombinant proteins produced in eukaryotic systems.

Full Text

The Full Text of this article is available as a PDF (1,008.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aebersold R. Mass spectrometry of proteins and peptides in biotechnology. Curr Opin Biotechnol. 1993 Aug;4(4):412–419. doi: 10.1016/0958-1669(93)90006-i. [DOI] [PubMed] [Google Scholar]
  2. Arakawa T., Hsu Y. R., Parker C. G., Lai P. H. Role of polycationic C-terminal portion in the structure and activity of recombinant human interferon-gamma. J Biol Chem. 1986 Jun 25;261(18):8534–8539. [PubMed] [Google Scholar]
  3. Chloupek R. C., Harris R. J., Leonard C. K., Keck R. G., Keyt B. A., Spellman M. W., Jones A. J., Hancock W. S. Study of the primary structure of recombinant tissue plasminogen activator by reversed-phase high-performance liquid chromatographic tryptic mapping. J Chromatogr. 1989 Feb 3;463(2):375–396. doi: 10.1016/s0021-9673(01)84491-5. [DOI] [PubMed] [Google Scholar]
  4. Davidson D. J., Castellino F. J. Asparagine-linked oligosaccharide processing in lepidopteran insect cells. Temporal dependence of the nature of the oligosaccharides assembled on asparagine-289 of recombinant human plasminogen produced in baculovirus vector infected Spodoptera frugiperda (IPLB-SF-21AE) cells. Biochemistry. 1991 Jun 25;30(25):6165–6174. doi: 10.1021/bi00239a013. [DOI] [PubMed] [Google Scholar]
  5. Grabenhorst E., Hofer B., Nimtz M., Jäger V., Conradt H. S. Biosynthesis and secretion of human interleukin 2 glycoprotein variants from baculovirus-infected Sf21 cells. Characterization of polypeptides and posttranslational modifications. Eur J Biochem. 1993 Jul 1;215(1):189–197. doi: 10.1111/j.1432-1033.1993.tb18022.x. [DOI] [PubMed] [Google Scholar]
  6. Gramer M. J., Goochee C. F. Glycosidase activities in Chinese hamster ovary cell lysate and cell culture supernatant. Biotechnol Prog. 1993 Jul-Aug;9(4):366–373. doi: 10.1021/bp00022a003. [DOI] [PubMed] [Google Scholar]
  7. Hara S., Yamaguchi M., Takemori Y., Furuhata K., Ogura H., Nakamura M. Determination of mono-O-acetylated N-acetylneuraminic acids in human and rat sera by fluorometric high-performance liquid chromatography. Anal Biochem. 1989 May 15;179(1):162–166. doi: 10.1016/0003-2697(89)90218-2. [DOI] [PubMed] [Google Scholar]
  8. Harvey D. J. Quantitative aspects of the matrix-assisted laser desorption mass spectrometry of complex oligosaccharides. Rapid Commun Mass Spectrom. 1993 Jul;7(7):614–619. doi: 10.1002/rcm.1290070712. [DOI] [PubMed] [Google Scholar]
  9. Hatsuzawa K., Nagahama M., Takahashi S., Takada K., Murakami K., Nakayama K. Purification and characterization of furin, a Kex2-like processing endoprotease, produced in Chinese hamster ovary cells. J Biol Chem. 1992 Aug 15;267(23):16094–16099. [PubMed] [Google Scholar]
  10. James D. C., Freedman R. B., Hoare M., Ogonah O. W., Rooney B. C., Larionov O. A., Dobrovolsky V. N., Lagutin O. V., Jenkins N. N-glycosylation of recombinant human interferon-gamma produced in different animal expression systems. Biotechnology (N Y) 1995 Jun;13(6):592–596. doi: 10.1038/nbt0695-592. [DOI] [PubMed] [Google Scholar]
  11. Jenkins N., Curling E. M. Glycosylation of recombinant proteins: problems and prospects. Enzyme Microb Technol. 1994 May;16(5):354–364. doi: 10.1016/0141-0229(94)90149-x. [DOI] [PubMed] [Google Scholar]
  12. Knepper T. P., Arbogast B., Schreurs J., Deinzer M. L. Determination of the glycosylation patterns, disulfide linkages, and protein heterogeneities of baculovirus-expressed mouse interleukin-3 by mass spectrometry. Biochemistry. 1992 Nov 24;31(46):11651–11659. doi: 10.1021/bi00161a053. [DOI] [PubMed] [Google Scholar]
  13. Kornfeld R., Kornfeld S. Assembly of asparagine-linked oligosaccharides. Annu Rev Biochem. 1985;54:631–664. doi: 10.1146/annurev.bi.54.070185.003215. [DOI] [PubMed] [Google Scholar]
  14. Licari P. J., Jarvis D. L., Bailey J. E. Insect cell hosts for baculovirus expression vectors contain endogenous exoglycosidase activity. Biotechnol Prog. 1993 Mar-Apr;9(2):146–152. doi: 10.1021/bp00020a005. [DOI] [PubMed] [Google Scholar]
  15. Lundell D., Lunn C., Dalgarno D., Fossetta J., Greenberg R., Reim R., Grace M., Narula S. The carboxyl-terminal region of human interferon gamma is important for biological activity: mutagenic and NMR analysis. Protein Eng. 1991 Feb;4(3):335–341. doi: 10.1093/protein/4.3.335. [DOI] [PubMed] [Google Scholar]
  16. Manneberg M., Friedlein A., Kurth H., Lahm H. W., Fountoulakis M. Structural analysis and localization of the carbohydrate moieties of a soluble human interferon gamma receptor produced in baculovirus-infected insect cells. Protein Sci. 1994 Jan;3(1):30–38. doi: 10.1002/pro.5560030105. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Rinderknecht E., O'Connor B. H., Rodriguez H. Natural human interferon-gamma. Complete amino acid sequence and determination of sites of glycosylation. J Biol Chem. 1984 Jun 10;259(11):6790–6797. [PubMed] [Google Scholar]
  18. Roebroek A. J., Creemers J. W., Pauli I. G., Kurzik-Dumke U., Rentrop M., Gateff E. A., Leunissen J. A., Van de Ven W. J. Cloning and functional expression of Dfurin2, a subtilisin-like proprotein processing enzyme of Drosophila melanogaster with multiple repeats of a cysteine motif. J Biol Chem. 1992 Aug 25;267(24):17208–17215. [PubMed] [Google Scholar]
  19. Sareneva T., Cantell K., Pyhälä L., Pirhonen J., Julkunen I. Effect of carbohydrates on the pharmacokinetics of human interferon-gamma. J Interferon Res. 1993 Aug;13(4):267–269. doi: 10.1089/jir.1993.13.267. [DOI] [PubMed] [Google Scholar]
  20. Sareneva T., Pirhonen J., Cantell K., Julkunen I. N-glycosylation of human interferon-gamma: glycans at Asn-25 are critical for protease resistance. Biochem J. 1995 May 15;308(Pt 1):9–14. doi: 10.1042/bj3080009. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Sareneva T., Pirhonen J., Cantell K., Kalkkinen N., Julkunen I. Role of N-glycosylation in the synthesis, dimerization and secretion of human interferon-gamma. Biochem J. 1994 Nov 1;303(Pt 3):831–840. doi: 10.1042/bj3030831. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Siuzdak G. The emergence of mass spectrometry in biochemical research. Proc Natl Acad Sci U S A. 1994 Nov 22;91(24):11290–11297. doi: 10.1073/pnas.91.24.11290. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Slack J. M., Kuzio J., Faulkner P. Characterization of v-cath, a cathepsin L-like proteinase expressed by the baculovirus Autographa californica multiple nuclear polyhedrosis virus. J Gen Virol. 1995 May;76(Pt 5):1091–1098. doi: 10.1099/0022-1317-76-5-1091. [DOI] [PubMed] [Google Scholar]
  24. Smeekens S. P. Processing of protein precursors by a novel family of subtilisin-related mammalian endoproteases. Biotechnology (N Y) 1993 Feb;11(2):182–186. doi: 10.1038/nbt0293-182. [DOI] [PubMed] [Google Scholar]
  25. Sugyiama K., Ahorn H., Maurer-Fogy I., Voss T. Expression of human interferon-alpha 2 in Sf9 cells. Characterization of O-linked glycosylation and protein heterogeneities. Eur J Biochem. 1993 Nov 1;217(3):921–927. doi: 10.1111/j.1432-1033.1993.tb18322.x. [DOI] [PubMed] [Google Scholar]
  26. Tsarbopoulos A., Karas M., Strupat K., Pramanik B. N., Nagabhushan T. L., Hillenkamp F. Comparative mapping of recombinant proteins and glycoproteins by plasma desorption and matrix-assisted laser desorption/ionization mass spectrometry. Anal Chem. 1994 Jul 1;66(13):2062–2070. doi: 10.1021/ac00085a022. [DOI] [PubMed] [Google Scholar]
  27. Voss T., Ergülen E., Ahorn H., Kubelka V., Sugiyama K., Maurer-Fogy I., Glössl J. Expression of human interferon omega 1 in Sf9 cells. No evidence for complex-type N-linked glycosylation or sialylation. Eur J Biochem. 1993 Nov 1;217(3):913–919. doi: 10.1111/j.1432-1033.1993.tb18321.x. [DOI] [PubMed] [Google Scholar]
  28. Walter M. R., Windsor W. T., Nagabhushan T. L., Lundell D. J., Lunn C. A., Zauodny P. J., Narula S. K. Crystal structure of a complex between interferon-gamma and its soluble high-affinity receptor. Nature. 1995 Jul 20;376(6537):230–235. doi: 10.1038/376230a0. [DOI] [PubMed] [Google Scholar]
  29. Wang R., Chait B. T. High-accuracy mass measurement as a tool for studying proteins. Curr Opin Biotechnol. 1994 Feb;5(1):77–84. doi: 10.1016/s0958-1669(05)80074-6. [DOI] [PubMed] [Google Scholar]
  30. Watanabe T., Nakagawa T., Ikemizu J., Nagahama M., Murakami K., Nakayama K. Sequence requirements for precursor cleavage within the constitutive secretory pathway. J Biol Chem. 1992 Apr 25;267(12):8270–8274. [PubMed] [Google Scholar]
  31. Zaia J., Annan R. S., Biemann K. The correct molecular weight of myoglobin, a common calibrant for mass spectrometry. Rapid Commun Mass Spectrom. 1992 Jan;6(1):32–36. doi: 10.1002/rcm.1290060108. [DOI] [PubMed] [Google Scholar]

Articles from Protein Science : A Publication of the Protein Society are provided here courtesy of The Protein Society

RESOURCES