Abstract
The substrate specificity of the NADP-dependent isocitrate dehydrogenase of Escherichia coli was investigated by combining site-directed mutagenesis and utilization of alternative substrates. A comparison of the kinetics of the wild-type enzyme with 2R-malate reveals that the gamma-carboxylate of 2R,3S-isocitrate contributes a factor of 12,000,000 to enzyme performance. Analysis of kinetic data compiled for 10 enzymes and nine different substrates reveals that a factor of 1,650 can be ascribed to the hydrogen bond formed between S113 and the gamma-carboxylate of bound isocitrate, a factor of 150 to the negative charge of the gamma-carboxylate, and a factor of 50 for the gamma-methyl. These results are entirely consistent with X-ray structures of Michaelis complexes that show a hydrogen bond positions the gamma-carboxylate of isocitrate so that a salt bridge can form to the nicotinamide ring of NADP.
Full Text
The Full Text of this article is available as a PDF (1.4 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Apps D. K. Complex formation between magnesium ions and pyridine nucleotide coenzymes. Biochim Biophys Acta. 1973 Sep 14;320(2):379–387. doi: 10.1016/0304-4165(73)90319-x. [DOI] [PubMed] [Google Scholar]
- BURTON K. Formation constants for the complexes of adenosine di- or tri-phosphate with magnesium or calcium ions. Biochem J. 1959 Feb;71(2):388–395. doi: 10.1042/bj0710388. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bolduc J. M., Dyer D. H., Scott W. G., Singer P., Sweet R. M., Koshland D. E., Jr, Stoddard B. L. Mutagenesis and Laue structures of enzyme intermediates: isocitrate dehydrogenase. Science. 1995 Jun 2;268(5215):1312–1318. doi: 10.1126/science.7761851. [DOI] [PubMed] [Google Scholar]
- Borthwick A. C., Holms W. H., Nimmo H. G. Amino acid sequence round the site of phosphorylation in isocitrate dehydrogenase from Escherichia coli ML308. FEBS Lett. 1984 Aug 20;174(1):112–115. doi: 10.1016/0014-5793(84)81087-x. [DOI] [PubMed] [Google Scholar]
- Dean A. M., Koshland D. E., Jr Kinetic mechanism of Escherichia coli isocitrate dehydrogenase. Biochemistry. 1993 Sep 14;32(36):9302–9309. doi: 10.1021/bi00087a007. [DOI] [PubMed] [Google Scholar]
- Dean A. M., Lee M. H., Koshland D. E., Jr Phosphorylation inactivates Escherichia coli isocitrate dehydrogenase by preventing isocitrate binding. J Biol Chem. 1989 Dec 5;264(34):20482–20486. [PubMed] [Google Scholar]
- Duggleby R. G., Dennis D. T. Regulation of the nicotinamide adenine dinucleotide-specific isocitrate dehydrogenase from a higher plant. The effect of reduced nicotinamide adenine dinucleotide and mixtures of citrate and isocitrate. J Biol Chem. 1970 Aug 10;245(15):3751–3754. [PubMed] [Google Scholar]
- Grissom C. B., Cleland W. W. Isotope effect studies of the chemical mechanism of pig heart NADP isocitrate dehydrogenase. Biochemistry. 1988 Apr 19;27(8):2934–2943. doi: 10.1021/bi00408a040. [DOI] [PubMed] [Google Scholar]
- Hurley J. H., Dean A. M., Koshland D. E., Jr, Stroud R. M. Catalytic mechanism of NADP(+)-dependent isocitrate dehydrogenase: implications from the structures of magnesium-isocitrate and NADP+ complexes. Biochemistry. 1991 Sep 3;30(35):8671–8678. doi: 10.1021/bi00099a026. [DOI] [PubMed] [Google Scholar]
- Hurley J. H., Dean A. M., Sohl J. L., Koshland D. E., Jr, Stroud R. M. Regulation of an enzyme by phosphorylation at the active site. Science. 1990 Aug 31;249(4972):1012–1016. doi: 10.1126/science.2204109. [DOI] [PubMed] [Google Scholar]
- Hurley J. H., Dean A. M., Thorsness P. E., Koshland D. E., Jr, Stroud R. M. Regulation of isocitrate dehydrogenase by phosphorylation involves no long-range conformational change in the free enzyme. J Biol Chem. 1990 Mar 5;265(7):3599–3602. doi: 10.2210/pdb4icd/pdb. [DOI] [PubMed] [Google Scholar]
- Hurley J. H., Thorsness P. E., Ramalingam V., Helmers N. H., Koshland D. E., Jr, Stroud R. M. Structure of a bacterial enzyme regulated by phosphorylation, isocitrate dehydrogenase. Proc Natl Acad Sci U S A. 1989 Nov;86(22):8635–8639. doi: 10.1073/pnas.86.22.8635. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Northrop D. B., Cleland W. W. The kinetics of pig heart triphosphopyridine nucleotide-isocitrate dehydrogenase. II. Dead-end and multiple inhibition studies. J Biol Chem. 1974 May 10;249(9):2928–2931. [PubMed] [Google Scholar]
- Stoddard B. L., Dean A., Koshland D. E., Jr Structure of isocitrate dehydrogenase with isocitrate, nicotinamide adenine dinucleotide phosphate, and calcium at 2.5-A resolution: a pseudo-Michaelis ternary complex. Biochemistry. 1993 Sep 14;32(36):9310–9316. doi: 10.1021/bi00087a008. [DOI] [PubMed] [Google Scholar]
- Thorsness P. E., Koshland D. E., Jr Inactivation of isocitrate dehydrogenase by phosphorylation is mediated by the negative charge of the phosphate. J Biol Chem. 1987 Aug 5;262(22):10422–10425. [PubMed] [Google Scholar]
- Willson V. J., Tipton K. F. The activation of ox-brain NAD+-dependent isocitrate dehydrogenase by magnesium ions. Eur J Biochem. 1981 Jan;113(3):477–483. doi: 10.1111/j.1432-1033.1981.tb05088.x. [DOI] [PubMed] [Google Scholar]