Abstract
Creatine kinase (CK) has been postulated to consist of two flexibly hinged domains. A previously demonstrated protease-sensitive site in M-CK (Morris & Jackson, 1991) has directed our attempts to dissect mitochondrial CK (Mi-CK) into two protein fragments encompassing amino acids [1-167] and [168-380]. When expressed separately in Escherichia coli, the two fragments yielded large amounts of insoluble inclusion bodies, from which the respective polypeptides could be purified by a simple two-step procedure. In contrast, co-expression of the two fragments yielded a soluble, active, and correctly oligomerizing enzyme. This discontinuous CK showed nearly full specific activity and was virtually indistinguishable from native Mi-CK by far- and near-UV CD. However, the positive cooperativity of substrate binding was abolished, suggesting a role of the covalent domain linkage in the crosstalk between the substrate binding sites for ATP and creatine. The isolated C-terminal fragment refolded into a native-like conformation in vitro, whereas the N-terminal fragment was largely unfolded. Prefolded [168-380] interacted in vitro with [1-167] to form an active enzyme. Kinetic analysis indicated that the fragments associate rapidly and with high affinity (1/K1 = 17 microM) and then isomerize slowly to an active enzyme (k2 = 0.12 min-1; k-2 = 0.03 min-1). Our data suggest that the C-terminal fragment of Mi-CK represents an autonomous folding unit, and that the folding of the C-terminal part might precede the conformational stabilization of the N-terminal moiety in vivo.
Full Text
The Full Text of this article is available as a PDF (3.2 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Cleland W. W. Statistical analysis of enzyme kinetic data. Methods Enzymol. 1979;63:103–138. doi: 10.1016/0076-6879(79)63008-2. [DOI] [PubMed] [Google Scholar]
- Furter R., Furter-Graves E. M., Wallimann T. Creatine kinase: the reactive cysteine is required for synergism but is nonessential for catalysis. Biochemistry. 1993 Jul 13;32(27):7022–7029. doi: 10.1021/bi00078a030. [DOI] [PubMed] [Google Scholar]
- Furter R., Kaldis P., Furter-Graves E. M., Schnyder T., Eppenberger H. M., Wallimann T. Expression of active octameric chicken cardiac mitochondrial creatine kinase in Escherichia coli. Biochem J. 1992 Dec 15;288(Pt 3):771–775. doi: 10.1042/bj2880771. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gross M., Furter-Graves E. M., Wallimann T., Eppenberger H. M., Furter R. The tryptophan residues of mitochondrial creatine kinase: roles of Trp-223, Trp-206, and Trp-264 in active-site and quaternary structure formation. Protein Sci. 1994 Jul;3(7):1058–1068. doi: 10.1002/pro.5560030708. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gross M., Lustig A., Wallimann T., Furter R. Multiple-state equilibrium unfolding of guanidino kinases. Biochemistry. 1995 Aug 22;34(33):10350–10357. doi: 10.1021/bi00033a005. [DOI] [PubMed] [Google Scholar]
- Gross M., Wallimann T. Dimer-dimer interactions in octameric mitochondrial creatine kinase. Biochemistry. 1995 May 23;34(20):6660–6667. doi: 10.1021/bi00020a011. [DOI] [PubMed] [Google Scholar]
- Gross M., Wallimann T. Kinetics of assembly and dissociation of the mitochondrial creatine kinase octamer. A fluorescence study. Biochemistry. 1993 Dec 21;32(50):13933–13940. doi: 10.1021/bi00213a024. [DOI] [PubMed] [Google Scholar]
- LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
- Lipskaya TYu, Trofimova M. E., Moiseeva N. S. Kinetic properties of the octameric and dimeric forms of mitochondrial creatine kinase and physiological role of the enzyme. Biochem Int. 1989 Sep;19(3):603–613. [PubMed] [Google Scholar]
- Morris G. E., Cartwright A. J. Monoclonal antibody studies suggest a catalytic site at the interface between domains in creatine kinase. Biochim Biophys Acta. 1990 Jul 6;1039(3):318–322. doi: 10.1016/0167-4838(90)90265-h. [DOI] [PubMed] [Google Scholar]
- Morris G. E., Jackson P. J. Identification by protein microsequencing of a proteinase-V8-cleavage site in a folding intermediate of chick muscle creatine kinase. Biochem J. 1991 Dec 15;280(Pt 3):809–811. doi: 10.1042/bj2800809. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Morris G. E. Monoclonal antibody studies of creatine kinase. The ART epitope: evidence for an intermediate in protein folding. Biochem J. 1989 Jan 15;257(2):461–469. doi: 10.1042/bj2570461. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Morrison J. F., Cleland W. W. Isotope exchange studies of the mechanism of the reaction catalyzed by adenosine triphosphate: creatine phosphotransferase. J Biol Chem. 1966 Feb 10;241(3):673–683. [PubMed] [Google Scholar]
- Mühlebach S. M., Gross M., Wirz T., Wallimann T., Perriard J. C., Wyss M. Sequence homology and structure predictions of the creatine kinase isoenzymes. Mol Cell Biochem. 1994 Apr-May;133-134:245–262. doi: 10.1007/BF01267958. [DOI] [PubMed] [Google Scholar]
- Richardson J. S. The anatomy and taxonomy of protein structure. Adv Protein Chem. 1981;34:167–339. doi: 10.1016/s0065-3233(08)60520-3. [DOI] [PubMed] [Google Scholar]
- Uversky V. N. Use of fast protein size-exclusion liquid chromatography to study the unfolding of proteins which denature through the molten globule. Biochemistry. 1993 Dec 7;32(48):13288–13298. doi: 10.1021/bi00211a042. [DOI] [PubMed] [Google Scholar]
- Wallimann T., Schlösser T., Eppenberger H. M. Function of M-line-bound creatine kinase as intramyofibrillar ATP regenerator at the receiving end of the phosphorylcreatine shuttle in muscle. J Biol Chem. 1984 Apr 25;259(8):5238–5246. [PubMed] [Google Scholar]
- Watson H. C., Walker N. P., Shaw P. J., Bryant T. N., Wendell P. L., Fothergill L. A., Perkins R. E., Conroy S. C., Dobson M. J., Tuite M. F. Sequence and structure of yeast phosphoglycerate kinase. EMBO J. 1982;1(12):1635–1640. doi: 10.1002/j.1460-2075.1982.tb01366.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wynn R. M., Davie J. R., Cox R. P., Chuang D. T. Chaperonins groEL and groES promote assembly of heterotetramers (alpha 2 beta 2) of mammalian mitochondrial branched-chain alpha-keto acid decarboxylase in Escherichia coli. J Biol Chem. 1992 Jun 25;267(18):12400–12403. [PubMed] [Google Scholar]
- Wyss M., James P., Schlegel J., Wallimann T. Limited proteolysis of creatine kinase. Implications for three-dimensional structure and for conformational substrates. Biochemistry. 1993 Oct 12;32(40):10727–10735. doi: 10.1021/bi00091a025. [DOI] [PubMed] [Google Scholar]