Abstract
Bacteriorhodopsin (bR) is a light-driven proton pump from Halobacterium salinarium and is a model system for studying membrane protein folding, stability, function, and structure. bR is composed of bacterio-opsin (bO), the 248-amino acid apo protein, and all-trans retinal, which is linked to lysine 216 via a protonated Schiff base. A bO gene (sbOd) possessing 29 unique restriction sites and a carboxyl-terminal purification epitope (1D4, nine amino acids) has been designed and synthesized. Overexpression of bO was achieved by fusion to the carboxyl terminus of maltose binding protein (MBP). The expressed fusion protein (MBP-sbO-1D4) formed inclusion bodies in Escherichia coli and, following solubilization with urea and removal of the urea by dialysis, approximately 170 mg of approximately 75% pure MBP-sbO-1D4 was obtained from 1 L of culture. MBP-sbO-1D4 formed high molecular weight (> or = 2,000 kDa) oligomers that were water-soluble. The synthetic bO with the 1D4 tag (sbO-1D4) was separated from MBP by trypsin cleavage at the factor Xa site between the MBP and sbO-1D4 domains. Selective trypsin cleavage at the factor Xa site, instead of at the 14 other potential trypsin sites within bO, was accomplished by optimization of the digestion conditions. Both MBP-sbO-1D4 and sbO-1D4 were regenerated with all-trans retinal and purified to homogeneity. In general, 6-10 mg of sbR-1D4 and 52 mg of MBP-sbR-1D4 were obtained from 1 L of cell culture. No significant differences in terms of UV/vis light absorbance, light/dark adaptation, and photocycle properties were observed among sbR-1D4, MBP-sbR-1D4, and bR from H. salinarium.
Full Text
The Full Text of this article is available as a PDF (3.0 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bauer U., Hildebrandt V., Dencher N. A., Wrede P. In vitro synthesis of bacterio-opsin: integration into microsomal membranes. Biochem Biophys Res Commun. 1992 Sep 30;187(3):1480–1485. doi: 10.1016/0006-291x(92)90469-2. [DOI] [PubMed] [Google Scholar]
- Bayley H., Huang K. S., Radhakrishnan R., Ross A. H., Takagaki Y., Khorana H. G. Site of attachment of retinal in bacteriorhodopsin. Proc Natl Acad Sci U S A. 1981 Apr;78(4):2225–2229. doi: 10.1073/pnas.78.4.2225. [DOI] [PMC free article] [PubMed] [Google Scholar]
- De Grip W. J. Purification of bovine rhodopsin over concanavalin A--sepharose. Methods Enzymol. 1982;81:197–207. doi: 10.1016/s0076-6879(82)81032-x. [DOI] [PubMed] [Google Scholar]
- Devereux J., Haeberli P., Smithies O. A comprehensive set of sequence analysis programs for the VAX. Nucleic Acids Res. 1984 Jan 11;12(1 Pt 1):387–395. doi: 10.1093/nar/12.1part1.387. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ferrando E., Schweiger U., Oesterhelt D. Homologous bacterio-opsin-encoding gene expression via site-specific vector integration. Gene. 1993 Mar 15;125(1):41–47. doi: 10.1016/0378-1119(93)90743-m. [DOI] [PubMed] [Google Scholar]
- Gale A. J., Schimmel P. Isolated RNA binding domain of a class I tRNA synthetase. Biochemistry. 1995 Jul 11;34(27):8896–8903. doi: 10.1021/bi00027a042. [DOI] [PubMed] [Google Scholar]
- Grisshammer R., Duckworth R., Henderson R. Expression of a rat neurotensin receptor in Escherichia coli. Biochem J. 1993 Oct 15;295(Pt 2):571–576. doi: 10.1042/bj2950571. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Henderson R., Baldwin J. M., Ceska T. A., Zemlin F., Beckmann E., Downing K. H. Model for the structure of bacteriorhodopsin based on high-resolution electron cryo-microscopy. J Mol Biol. 1990 Jun 20;213(4):899–929. doi: 10.1016/S0022-2836(05)80271-2. [DOI] [PubMed] [Google Scholar]
- Hiraoka O., Anaguchi H., Yamasaki K., Fukunaga R., Nagata S., Ota Y. Ligand binding domain of granulocyte colony-stimulating factor receptor. J Biol Chem. 1994 Sep 2;269(35):22412–22419. [PubMed] [Google Scholar]
- Huang K. S., Bayley H., Khorana H. G. Delipidation of bacteriorhodopsin and reconstitution with exogenous phospholipid. Proc Natl Acad Sci U S A. 1980 Jan;77(1):323–327. doi: 10.1073/pnas.77.1.323. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Huang K. S., Bayley H., Liao M. J., London E., Khorana H. G. Refolding of an integral membrane protein. Denaturation, renaturation, and reconstitution of intact bacteriorhodopsin and two proteolytic fragments. J Biol Chem. 1981 Apr 25;256(8):3802–3809. [PubMed] [Google Scholar]
- Kahn T. W., Engelman D. M. Bacteriorhodopsin can be refolded from two independently stable transmembrane helices and the complementary five-helix fragment. Biochemistry. 1992 Jul 7;31(26):6144–6151. doi: 10.1021/bi00141a027. [DOI] [PubMed] [Google Scholar]
- Karnik S. S., Nassal M., Doi T., Jay E., Sgaramella V., Khorana H. G. Structure-function studies on bacteriorhodopsin. II. Improved expression of the bacterio-opsin gene in Escherichia coli. J Biol Chem. 1987 Jul 5;262(19):9255–9263. [PubMed] [Google Scholar]
- Kellermann O. K., Ferenci T. Maltose-binding protein from Escherichia coli. Methods Enzymol. 1982;90(Pt E):459–463. doi: 10.1016/s0076-6879(82)90171-9. [DOI] [PubMed] [Google Scholar]
- Khorana H. G., Gerber G. E., Herlihy W. C., Gray C. P., Anderegg R. J., Nihei K., Biemann K. Amino acid sequence of bacteriorhodopsin. Proc Natl Acad Sci U S A. 1979 Oct;76(10):5046–5050. doi: 10.1073/pnas.76.10.5046. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Khorana H. G. Two light-transducing membrane proteins: bacteriorhodopsin and the mammalian rhodopsin. Proc Natl Acad Sci U S A. 1993 Feb 15;90(4):1166–1171. doi: 10.1073/pnas.90.4.1166. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ko Y. H., Thomas P. J., Delannoy M. R., Pedersen P. L. The cystic fibrosis transmembrane conductance regulator. Overexpression, purification, and characterization of wild type and delta F508 mutant forms of the first nucleotide binding fold in fusion with the maltose-binding protein. J Biol Chem. 1993 Nov 15;268(32):24330–24338. [PubMed] [Google Scholar]
- Krebs M. P., Hauss T., Heyn M. P., RajBhandary U. L., Khorana H. G. Expression of the bacterioopsin gene in Halobacterium halobium using a multicopy plasmid. Proc Natl Acad Sci U S A. 1991 Feb 1;88(3):859–863. doi: 10.1073/pnas.88.3.859. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Krebs M. P., Khorana H. G. Mechanism of light-dependent proton translocation by bacteriorhodopsin. J Bacteriol. 1993 Mar;175(6):1555–1560. doi: 10.1128/jb.175.6.1555-1560.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lanyi J. K. Proton translocation mechanism and energetics in the light-driven pump bacteriorhodopsin. Biochim Biophys Acta. 1993 Dec 7;1183(2):241–261. doi: 10.1016/0005-2728(93)90226-6. [DOI] [PubMed] [Google Scholar]
- Liao M. J., London E., Khorana H. G. Regeneration of the native bacteriorhodopsin structure from two chymotryptic fragments. J Biol Chem. 1983 Aug 25;258(16):9949–9955. [PubMed] [Google Scholar]
- London E., Khorana H. G. Denaturation and renaturation of bacteriorhodopsin in detergents and lipid-detergent mixtures. J Biol Chem. 1982 Jun 25;257(12):7003–7011. [PubMed] [Google Scholar]
- MacKenzie D., Arendt A., Hargrave P., McDowell J. H., Molday R. S. Localization of binding sites for carboxyl terminal specific anti-rhodopsin monoclonal antibodies using synthetic peptides. Biochemistry. 1984 Dec 18;23(26):6544–6549. doi: 10.1021/bi00321a041. [DOI] [PubMed] [Google Scholar]
- Matsudaira P. Sequence from picomole quantities of proteins electroblotted onto polyvinylidene difluoride membranes. J Biol Chem. 1987 Jul 25;262(21):10035–10038. [PubMed] [Google Scholar]
- Miercke L. J., Betlach M. C., Mitra A. K., Shand R. F., Fong S. K., Stroud R. M. Wild-type and mutant bacteriorhodopsins D85N, D96N, and R82Q: purification to homogeneity, pH dependence of pumping, and electron diffraction. Biochemistry. 1991 Mar 26;30(12):3088–3098. doi: 10.1021/bi00226a016. [DOI] [PubMed] [Google Scholar]
- Milder S. J., Thorgeirsson T. E., Miercke L. J., Stroud R. M., Kliger D. S. Effects of detergent environments on the photocycle of purified monomeric bacteriorhodopsin. Biochemistry. 1991 Feb 19;30(7):1751–1761. doi: 10.1021/bi00221a004. [DOI] [PubMed] [Google Scholar]
- Muccio D. D., DeLucas L. J. Isolation of detergent-solubilized monomers of bacteriorhodopsin by size-exclusion high-performance liquid chromatography. J Chromatogr. 1985 Jun 19;326:243–250. doi: 10.1016/s0021-9673(01)87450-1. [DOI] [PubMed] [Google Scholar]
- Nambiar K. P., Stackhouse J., Presnell S. R., Benner S. A. Expression of bovine pancreatic ribonuclease A in Escherichia coli. Eur J Biochem. 1987 Feb 16;163(1):67–71. doi: 10.1111/j.1432-1033.1987.tb10737.x. [DOI] [PubMed] [Google Scholar]
- Ni B. F., Chang M., Duschl A., Lanyi J., Needleman R. An efficient system for the synthesis of bacteriorhodopsin in Halobacterium halobium. Gene. 1990 May 31;90(1):169–172. doi: 10.1016/0378-1119(90)90456-2. [DOI] [PubMed] [Google Scholar]
- Oesterhelt D., Stoeckenius W. Rhodopsin-like protein from the purple membrane of Halobacterium halobium. Nat New Biol. 1971 Sep 29;233(39):149–152. doi: 10.1038/newbio233149a0. [DOI] [PubMed] [Google Scholar]
- Oprian D. D., Molday R. S., Kaufman R. J., Khorana H. G. Expression of a synthetic bovine rhodopsin gene in monkey kidney cells. Proc Natl Acad Sci U S A. 1987 Dec;84(24):8874–8878. doi: 10.1073/pnas.84.24.8874. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ovchinnikov Y. A., Abdulaev N. G., Feigina M. Y., Kiselev A. V., Lobanov N. A. The structural basis of the functioning of bacteriorhodopsin: an overview. FEBS Lett. 1979 Apr 15;100(2):219–224. doi: 10.1016/0014-5793(79)80338-5. [DOI] [PubMed] [Google Scholar]
- Pompejus M., Friedrich K., Teufel M., Fritz H. J. High-yield production of bacteriorhodopsin via expression of a synthetic gene in Escherichia coli. Eur J Biochem. 1993 Jan 15;211(1-2):27–35. doi: 10.1111/j.1432-1033.1993.tb19866.x. [DOI] [PubMed] [Google Scholar]
- Prodromou C., Pearl L. H. Recursive PCR: a novel technique for total gene synthesis. Protein Eng. 1992 Dec;5(8):827–829. doi: 10.1093/protein/5.8.827. [DOI] [PubMed] [Google Scholar]
- Quinlan R. A., Moir R. D., Stewart M. Expression in Escherichia coli of fragments of glial fibrillary acidic protein: characterization, assembly properties and paracrystal formation. J Cell Sci. 1989 May;93(Pt 1):71–83. doi: 10.1242/jcs.93.1.71. [DOI] [PubMed] [Google Scholar]
- Rehorek M., Heyn M. P. Binding of all-trans-retinal to the purple membrane. Evidence for cooperativity and determination of the extinction coefficient. Biochemistry. 1979 Oct 30;18(22):4977–4983. doi: 10.1021/bi00589a027. [DOI] [PubMed] [Google Scholar]
- Sandhu G. S., Aleff R. A., Kline B. C. Dual asymmetric PCR: one-step construction of synthetic genes. Biotechniques. 1992 Jan;12(1):14–16. [PubMed] [Google Scholar]
- Shand R. F., Miercke L. J., Mitra A. K., Fong S. K., Stroud R. M., Betlach M. C. Wild-type and mutant bacterioopsins D85N, D96N, and R82Q: high-level expression in Escherichia coli. Biochemistry. 1991 Mar 26;30(12):3082–3088. doi: 10.1021/bi00226a015. [DOI] [PubMed] [Google Scholar]
- Sonar S., Patel N., Fischer W., Rothschild K. J. Cell-free synthesis, functional refolding, and spectroscopic characterization of bacteriorhodopsin, an integral membrane protein. Biochemistry. 1993 Dec 21;32(50):13777–13781. doi: 10.1021/bi00213a004. [DOI] [PubMed] [Google Scholar]
- WALD G., BROWN P. K. The molar extinction of rhodopsin. J Gen Physiol. 1953 Nov 20;37(2):189–200. doi: 10.1085/jgp.37.2.189. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wildenauer D., Khorana H. G. The preparation of lipid-depleted bacteriorhodopsin. Biochim Biophys Acta. 1977 Apr 18;466(2):315–324. doi: 10.1016/0005-2736(77)90227-9. [DOI] [PubMed] [Google Scholar]
- Yamaguchi N., Jinbo Y., Arai M., Koyama K. Visualization of the morphology of purple membrane surfaces by monoclonal antibody techniques. FEBS Lett. 1993 Jun 21;324(3):287–292. doi: 10.1016/0014-5793(93)80136-i. [DOI] [PubMed] [Google Scholar]
- Ye Q. Z., Johnson L. L., Baragi V. Gene synthesis and expression in E. coli for pump, a human matrix metalloproteinase. Biochem Biophys Res Commun. 1992 Jul 15;186(1):143–149. doi: 10.1016/s0006-291x(05)80786-7. [DOI] [PubMed] [Google Scholar]