Skip to main content
Protein Science : A Publication of the Protein Society logoLink to Protein Science : A Publication of the Protein Society
. 1996 Mar;5(3):434–441. doi: 10.1002/pro.5560050304

The structure of bovine mitochondrial adenylate kinase: comparison with isoenzymes in other compartments.

G J Schlauderer 1, G E Schulz 1
PMCID: PMC2143366  PMID: 8868479

Abstract

In vertebrates, there are different adenylate kinases in the compartments cytosol, mitochondrial intermembrane space, and mitochondrial matrix. Here, we report the spatial structure of the intermembrane species established in two crystal forms by X-ray diffraction analyses at 1.92 and 2.1 A resolution. In both structures, the enzyme is unligated, and thus in an "open" conformation. The enzyme was prepared from bovine liver, containing at least five variants arisen from posttranscriptional and posttranslational modifications. It could only be crystallized after removing some of these variants. A comparison with the known structures of the adenylate kinases from cytosol and mitochondrial matrix reveals structural differences that should play a role in protein targeting because none of these enzymes contains a cleavable signal peptide. A further comparison with adenylate kinases from Gram-positive bacteria showed that the structural Zn2+ ion of these species is replaced by a strictly conserved assembly of hydrogen bonded residues.

Full Text

The Full Text of this article is available as a PDF (3.7 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abele U., Schulz G. E. High-resolution structures of adenylate kinase from yeast ligated with inhibitor Ap5A, showing the pathway of phosphoryl transfer. Protein Sci. 1995 Jul;4(7):1262–1271. doi: 10.1002/pro.5560040702. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Berry M. B., Meador B., Bilderback T., Liang P., Glaser M., Phillips G. N., Jr The closed conformation of a highly flexible protein: the structure of E. coli adenylate kinase with bound AMP and AMPPNP. Proteins. 1994 Jul;19(3):183–198. doi: 10.1002/prot.340190304. [DOI] [PubMed] [Google Scholar]
  3. Douglas M. G., McCammon M. T., Vassarotti A. Targeting proteins into mitochondria. Microbiol Rev. 1986 Jun;50(2):166–178. doi: 10.1128/mr.50.2.166-178.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Dreusicke D., Karplus P. A., Schulz G. E. Refined structure of porcine cytosolic adenylate kinase at 2.1 A resolution. J Mol Biol. 1988 Jan 20;199(2):359–371. doi: 10.1016/0022-2836(88)90319-1. [DOI] [PubMed] [Google Scholar]
  5. Dreusicke D., Schulz G. E. The glycine-rich loop of adenylate kinase forms a giant anion hole. FEBS Lett. 1986 Nov 24;208(2):301–304. doi: 10.1016/0014-5793(86)81037-7. [DOI] [PubMed] [Google Scholar]
  6. Font B., Gautheron D. C. General and kinetic properties of pig heart mitochondrial adenylate kinase. Biochim Biophys Acta. 1980 Feb 14;611(2):299–308. doi: 10.1016/0005-2744(80)90065-0. [DOI] [PubMed] [Google Scholar]
  7. Gilles A. M., Glaser P., Perrier V., Meier A., Longin R., Sebald M., Maignan L., Pistotnik E., Bârzu O. Zinc, a structural component of adenylate kinases from gram-positive bacteria. J Bacteriol. 1994 Jan;176(2):520–523. doi: 10.1128/jb.176.2.520-523.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Glick B., Schatz G. Import of proteins into mitochondria. Annu Rev Genet. 1991;25:21–44. doi: 10.1146/annurev.ge.25.120191.000321. [DOI] [PubMed] [Google Scholar]
  9. Goelz S. E., Cronan J. E., Jr Adenylate kinase of Escherichia coli: evidence for a functional interaction in phospholipid synthesis. Biochemistry. 1982 Jan 5;21(1):189–195. doi: 10.1021/bi00530a032. [DOI] [PubMed] [Google Scholar]
  10. Heil A., Müller G., Noda L., Pinder T., Schirmer H., Schirmer I., von Zabern I. The amino-acid sequence of sarcine adenylate kinase from skeletal muscle. Eur J Biochem. 1974 Mar 15;43(1):131–144. doi: 10.1111/j.1432-1033.1974.tb03393.x. [DOI] [PubMed] [Google Scholar]
  11. Kishi F., Tanizawa Y., Nakazawa A. Isolation and characterization of two types of cDNA for mitochondrial adenylate kinase and their expression in Escherichia coli. J Biol Chem. 1987 Aug 25;262(24):11785–11789. [PubMed] [Google Scholar]
  12. Kuby S. A., Palmieri R. H., Frischat A., Fischer A. H., Wu L. H., Maland L., Manship M. Studies on adenosine triphosphate transphosphorylases. Amino acid sequence of rabbit muscle ATP-AMP transphosphorylase. Biochemistry. 1984 May 22;23(11):2393–2399. doi: 10.1021/bi00306a012. [DOI] [PubMed] [Google Scholar]
  13. Magdolen V., Schricker R., Strobel G., Germaier H., Bandlow W. In vivo import of yeast adenylate kinase into mitochondria affected by site-directed mutagenesis. FEBS Lett. 1992 Mar 16;299(3):267–272. doi: 10.1016/0014-5793(92)80129-5. [DOI] [PubMed] [Google Scholar]
  14. Markland F. S., Wadkins C. L. Adenosine triphosphate-adenosine 5'-monophosphate phosphotransferase of bovine liver mitochondria. I. Isolation and chemical properties. J Biol Chem. 1966 Sep 25;241(18):4124–4135. [PubMed] [Google Scholar]
  15. Miyoshi K., Egi Y., Shioda T., Kawasaki T. Evidence for in vivo synthesis of thiamin triphosphate by cytosolic adenylate kinase in chicken skeletal muscle. J Biochem. 1990 Aug;108(2):267–270. doi: 10.1093/oxfordjournals.jbchem.a123192. [DOI] [PubMed] [Google Scholar]
  16. Müller-Dieckmann H. J., Schulz G. E. Substrate specificity and assembly of the catalytic center derived from two structures of ligated uridylate kinase. J Mol Biol. 1995 Mar 3;246(4):522–530. doi: 10.1006/jmbi.1994.0104. [DOI] [PubMed] [Google Scholar]
  17. Müller C. W., Schulz G. E. Structure of the complex between adenylate kinase from Escherichia coli and the inhibitor Ap5A refined at 1.9 A resolution. A model for a catalytic transition state. J Mol Biol. 1992 Mar 5;224(1):159–177. doi: 10.1016/0022-2836(92)90582-5. [DOI] [PubMed] [Google Scholar]
  18. Nicholls A., Sharp K. A., Honig B. Protein folding and association: insights from the interfacial and thermodynamic properties of hydrocarbons. Proteins. 1991;11(4):281–296. doi: 10.1002/prot.340110407. [DOI] [PubMed] [Google Scholar]
  19. Schulz G. E., Müller C. W., Diederichs K. Induced-fit movements in adenylate kinases. J Mol Biol. 1990 Jun 20;213(4):627–630. doi: 10.1016/S0022-2836(05)80250-5. [DOI] [PubMed] [Google Scholar]
  20. Spuergin P., Abele U., Schulz G. E. Stability, activity and structure of adenylate kinase mutants. Eur J Biochem. 1995 Jul 15;231(2):405–413. doi: 10.1111/j.1432-1033.1995.tb20713.x. [DOI] [PubMed] [Google Scholar]
  21. Stehle T., Schulz G. E. Refined structure of the complex between guanylate kinase and its substrate GMP at 2.0 A resolution. J Mol Biol. 1992 Apr 20;224(4):1127–1141. doi: 10.1016/0022-2836(92)90474-x. [DOI] [PubMed] [Google Scholar]
  22. Tanabe T., Yamada M., Noma T., Kajii T., Nakazawa A. Tissue-specific and developmentally regulated expression of the genes encoding adenylate kinase isozymes. J Biochem. 1993 Feb;113(2):200–207. doi: 10.1093/oxfordjournals.jbchem.a124026. [DOI] [PubMed] [Google Scholar]
  23. Tanaka H., Yamada M., Kishi F., Nakazawa A. Isolation and characterization of the gene encoding bovine adenylate kinase isozyme 2. Gene. 1990 Sep 14;93(2):221–227. doi: 10.1016/0378-1119(90)90228-j. [DOI] [PubMed] [Google Scholar]
  24. Tomasselli A. G., Frank R., Schiltz E. The complete primary structure of GTP:AMP phosphotransferase from beef heart mitochondria. FEBS Lett. 1986 Jul 7;202(2):303–308. doi: 10.1016/0014-5793(86)80706-2. [DOI] [PubMed] [Google Scholar]
  25. Tomasselli A. G., Noda L. H. Mitochondrial ATP:AMP phosphotransferase from beef heart: purification and properties. Eur J Biochem. 1980 Feb;103(3):481–491. doi: 10.1111/j.1432-1033.1980.tb05972.x. [DOI] [PubMed] [Google Scholar]
  26. Vonrhein C., Schlauderer G. J., Schulz G. E. Movie of the structural changes during a catalytic cycle of nucleoside monophosphate kinases. Structure. 1995 May 15;3(5):483–490. doi: 10.1016/s0969-2126(01)00181-2. [DOI] [PubMed] [Google Scholar]
  27. Watenpaugh K. D., Sieker L. C., Jensen L. H. Crystallographic refinement of rubredoxin at 1 x 2 A degrees resolution. J Mol Biol. 1980 Apr 15;138(3):615–633. doi: 10.1016/s0022-2836(80)80020-9. [DOI] [PubMed] [Google Scholar]
  28. Wild K., Bohner T., Aubry A., Folkers G., Schulz G. E. The three-dimensional structure of thymidine kinase from herpes simplex virus type 1. FEBS Lett. 1995 Jul 17;368(2):289–292. doi: 10.1016/0014-5793(95)00680-8. [DOI] [PubMed] [Google Scholar]
  29. Yamada M., Shahjahan M., Tanabe T., Kishi F., Nakazawa A. Cloning and characterization of cDNA for mitochondrial GTP:AMP phosphotransferase of bovine liver. J Biol Chem. 1989 Nov 15;264(32):19192–19199. [PubMed] [Google Scholar]

Articles from Protein Science : A Publication of the Protein Society are provided here courtesy of The Protein Society

RESOURCES