Skip to main content
Protein Science : A Publication of the Protein Society logoLink to Protein Science : A Publication of the Protein Society
. 1996 Apr;5(4):565–577. doi: 10.1002/pro.5560050402

Solution structure and lipid binding of a nonspecific lipid transfer protein extracted from maize seeds.

J Gomar 1, M C Petit 1, P Sodano 1, D Sy 1, D Marion 1, J C Kader 1, F Vovelle 1, M Ptak 1
PMCID: PMC2143376  PMID: 8845747

Abstract

The three-dimensional solution structure of a nonspecific lipid transfer protein extracted from maize seeds determined by 1H NMR spectroscopy is described. This cationic protein consists of 93 amino acid residues. Its structure was determined from 1,091 NOE-derived distance restraints, including 929 interresidue connectivities and 197 dihedral restraints (phi, psi, chi 1) derived from NOEs and 3J coupling constants. The global fold involving four helical fragments connected by three loops and a C-terminal tail without regular secondary structures is stabilized by four disulfide bridges. The most striking feature of this structure is the existence of an internal hydrophobic cavity running through the whole molecule. The global fold of this protein, very similar to that of a previously described lipid transfer protein extracted from wheat seeds (Gincel E et al., 1994, Eur J Biochem 226:413-422) constitutes a new architecture for alpha-class proteins. 1H NMR and fluorescence studies show that this protein forms well-defined complexes in aqueous solution with lysophosphatidylcholine. Dissociation constants, Kd, of 1.9 +/- 0.6 x 10(-6) M and > 10(-3) M were obtained with lyso-C16 and -C12, respectively. A structure model for a lipid-protein complex is proposed in which the aliphatic chain of the phospholipid is inserted in the internal cavity and the polar head interacts with the charged side chains located at one end of this cavity. Our model for the lipid-protein complex is qualitatively very similar to the recently published crystal structure (Shin DH et al., 1995, Structure 3:189-199).

Full Text

The Full Text of this article is available as a PDF (9.6 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aguirre P. J., Smith A. G. Molecular characterization of a gene encoding a cysteine-rich protein preferentially expressed in anthers of Lycopersicon esculentum. Plant Mol Biol. 1993 Nov;23(3):477–487. doi: 10.1007/BF00019296. [DOI] [PubMed] [Google Scholar]
  2. Baud F., Pebay-Peyroula E., Cohen-Addad C., Odani S., Lehmann M. S. Crystal structure of hydrophobic protein from soybean; a member of a new cysteine-rich family. J Mol Biol. 1993 Jun 5;231(3):877–887. doi: 10.1006/jmbi.1993.1334. [DOI] [PubMed] [Google Scholar]
  3. Bernhard W. R., Thoma S., Botella J., Somerville C. R. Isolation of a cDNA Clone for Spinach Lipid Transfer Protein and Evidence that the Protein Is Synthesized by the Secretory Pathway. Plant Physiol. 1991 Jan;95(1):164–170. doi: 10.1104/pp.95.1.164. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bowles D. J. Defense-related proteins in higher plants. Annu Rev Biochem. 1990;59:873–907. doi: 10.1146/annurev.bi.59.070190.004301. [DOI] [PubMed] [Google Scholar]
  5. Coutos-Thevenot P., Jouenne T., Maes O., Guerbette F., Grosbois M., Le Caer J. P., Boulay M., Deloire A., Kader J. C., Guern J. Four 9-kDa proteins excreted by somatic embryos of grapevine are isoforms of lipid-transfer proteins. Eur J Biochem. 1993 Nov 1;217(3):885–889. doi: 10.1111/j.1432-1033.1993.tb18317.x. [DOI] [PubMed] [Google Scholar]
  6. Crain R. C., Zilversmit D. B. Two nonspecific phospholipid exchange proteins from beef liver. I. Purification and characterization. Biochemistry. 1980 Apr 1;19(7):1433–1439. doi: 10.1021/bi00548a026. [DOI] [PubMed] [Google Scholar]
  7. Désormeaux A., Blochet J. E., Pézolet M., Marion D. Amino acid sequence of a non-specific wheat phospholipid transfer protein and its conformation as revealed by infrared and Raman spectroscopy. Role of disulfide bridges and phospholipids in the stabilization of the alpha-helix structure. Biochim Biophys Acta. 1992 May 22;1121(1-2):137–152. doi: 10.1016/0167-4838(92)90347-g. [DOI] [PubMed] [Google Scholar]
  8. Fleming A. J., Mandel T., Hofmann S., Sterk P., de Vries S. C., Kuhlemeier C. Expression pattern of a tobacco lipid transfer protein gene within the shoot apex. Plant J. 1992 Nov;2(6):855–862. [PubMed] [Google Scholar]
  9. Geldwerth D., de Kermel A., Zachowski A., Guerbette F., Kader J. C., Henry J. P., Devaux P. F. Use of spin-labeled and fluorescent lipids to study the activity of the phospholipid transfer protein from maize seedlings. Biochim Biophys Acta. 1991 Apr 3;1082(3):255–264. doi: 10.1016/0005-2760(91)90201-r. [DOI] [PubMed] [Google Scholar]
  10. Gincel E., Simorre J. P., Caille A., Marion D., Ptak M., Vovelle F. Three-dimensional structure in solution of a wheat lipid-transfer protein from multidimensional 1H-NMR data. A new folding for lipid carriers. Eur J Biochem. 1994 Dec 1;226(2):413–422. doi: 10.1111/j.1432-1033.1994.tb20066.x. [DOI] [PubMed] [Google Scholar]
  11. Güntert P., Braun W., Wüthrich K. Efficient computation of three-dimensional protein structures in solution from nuclear magnetic resonance data using the program DIANA and the supporting programs CALIBA, HABAS and GLOMSA. J Mol Biol. 1991 Feb 5;217(3):517–530. doi: 10.1016/0022-2836(91)90754-t. [DOI] [PubMed] [Google Scholar]
  12. Harris N. L., Presnell S. R., Cohen F. E. Four helix bundle diversity in globular proteins. J Mol Biol. 1994 Mar 11;236(5):1356–1368. doi: 10.1016/0022-2836(94)90063-9. [DOI] [PubMed] [Google Scholar]
  13. Kabsch W., Sander C. Dictionary of protein secondary structure: pattern recognition of hydrogen-bonded and geometrical features. Biopolymers. 1983 Dec;22(12):2577–2637. doi: 10.1002/bip.360221211. [DOI] [PubMed] [Google Scholar]
  14. Meijer E. A., de Vries S. C., Sterk P., Gadella D. W., Jr, Wirtz K. W., Hendriks T. Characterization of the non-specific lipid transfer protein EP2 from carrot (Daucus carota L.). Mol Cell Biochem. 1993 Jun 9;123(1-2):159–166. doi: 10.1007/BF01076488. [DOI] [PubMed] [Google Scholar]
  15. Molina A., Segura A., García-Olmedo F. Lipid transfer proteins (nsLTPs) from barley and maize leaves are potent inhibitors of bacterial and fungal plant pathogens. FEBS Lett. 1993 Jan 25;316(2):119–122. doi: 10.1016/0014-5793(93)81198-9. [DOI] [PubMed] [Google Scholar]
  16. Pelèse-Siebenbourg F., Caelles C., Kader J. C., Delseny M., Puigdomènech P. A pair of genes coding for lipid-transfer proteins in Sorghum vulgare. Gene. 1994 Oct 21;148(2):305–308. doi: 10.1016/0378-1119(94)90703-x. [DOI] [PubMed] [Google Scholar]
  17. Petit M. C., Sodano P., Marion D., Ptak M. Two-dimensional 1H-NMR studies of maize lipid-transfer protein. Sequence-specific assignment and secondary structure. Eur J Biochem. 1994 Jun 15;222(3):1047–1054. doi: 10.1111/j.1432-1033.1994.tb18957.x. [DOI] [PubMed] [Google Scholar]
  18. Rueckert D. G., Schmidt K. Lipid transfer proteins. Chem Phys Lipids. 1990 Nov;56(1):1–20. doi: 10.1016/0009-3084(90)90083-4. [DOI] [PubMed] [Google Scholar]
  19. Scott D. L., Sigler P. B. Structure and catalytic mechanism of secretory phospholipases A2. Adv Protein Chem. 1994;45:53–88. doi: 10.1016/s0065-3233(08)60638-5. [DOI] [PubMed] [Google Scholar]
  20. Shin D. H., Lee J. Y., Hwang K. Y., Kim K. K., Suh S. W. High-resolution crystal structure of the non-specific lipid-transfer protein from maize seedlings. Structure. 1995 Feb 15;3(2):189–199. doi: 10.1016/s0969-2126(01)00149-6. [DOI] [PubMed] [Google Scholar]
  21. Skriver K., Leah R., Müller-Uri F., Olsen F. L., Mundy J. Structure and expression of the barley lipid transfer protein gene Ltp1. Plant Mol Biol. 1992 Feb;18(3):585–589. doi: 10.1007/BF00040674. [DOI] [PubMed] [Google Scholar]
  22. Smart O. S., Goodfellow J. M., Wallace B. A. The pore dimensions of gramicidin A. Biophys J. 1993 Dec;65(6):2455–2460. doi: 10.1016/S0006-3495(93)81293-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Sodano P., Ptak M. Secondary structure in solution of the hydrophobic protein of soybean (HPS) as revealed by 1H NMR. J Biomol Struct Dyn. 1995 Apr;12(5):1009–1022. doi: 10.1080/07391102.1995.10508793. [DOI] [PubMed] [Google Scholar]
  24. Sossountzov L., Ruiz-Avila L., Vignols F., Jolliot A., Arondel V., Tchang F., Grosbois M., Guerbette F., Miginiac E., Delseny M. Spatial and temporal expression of a maize lipid transfer protein gene. Plant Cell. 1991 Sep;3(9):923–933. doi: 10.1105/tpc.3.9.923. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Sterk P., Booij H., Schellekens G. A., Van Kammen A., De Vries S. C. Cell-specific expression of the carrot EP2 lipid transfer protein gene. Plant Cell. 1991 Sep;3(9):907–921. doi: 10.1105/tpc.3.9.907. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Subirade M., Salesse C., Marion D., Pézolet M. Interaction of a nonspecific wheat lipid transfer protein with phospholipid monolayers imaged by fluorescence microscopy and studied by infrared spectroscopy. Biophys J. 1995 Sep;69(3):974–988. doi: 10.1016/S0006-3495(95)79971-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Takishima K., Watanabe S., Yamada M., Suga T., Mamiya G. Amino acid sequences of two nonspecific lipid-transfer proteins from germinated castor bean. Eur J Biochem. 1988 Nov 1;177(2):241–249. doi: 10.1111/j.1432-1033.1988.tb14368.x. [DOI] [PubMed] [Google Scholar]
  28. Thoma S., Hecht U., Kippers A., Botella J., De Vries S., Somerville C. Tissue-specific expression of a gene encoding a cell wall-localized lipid transfer protein from Arabidopsis. Plant Physiol. 1994 May;105(1):35–45. doi: 10.1104/pp.105.1.35. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Torres-Schumann S., Godoy J. A., Pintor-Toro J. A. A probable lipid transfer protein gene is induced by NaCl in stems of tomato plants. Plant Mol Biol. 1992 Feb;18(4):749–757. doi: 10.1007/BF00020016. [DOI] [PubMed] [Google Scholar]
  30. Tsuboi S., Osafune T., Tsugeki R., Nishimura M., Yamada M. Nonspecific lipid transfer protein in castor bean cotyledon cells: subcellular localization and a possible role in lipid metabolism. J Biochem. 1992 Apr;111(4):500–508. doi: 10.1093/oxfordjournals.jbchem.a123787. [DOI] [PubMed] [Google Scholar]
  31. Vignols F., Lund G., Pammi S., Trémousaygue D., Grellet F., Kader J. C., Puigdomènech P., Delseny M. Characterization of a rice gene coding for a lipid transfer protein. Gene. 1994 May 16;142(2):265–270. doi: 10.1016/0378-1119(94)90272-0. [DOI] [PubMed] [Google Scholar]
  32. Wüthrich K., Billeter M., Braun W. Pseudo-structures for the 20 common amino acids for use in studies of protein conformations by measurements of intramolecular proton-proton distance constraints with nuclear magnetic resonance. J Mol Biol. 1983 Oct 5;169(4):949–961. doi: 10.1016/s0022-2836(83)80144-2. [DOI] [PubMed] [Google Scholar]

Articles from Protein Science : A Publication of the Protein Society are provided here courtesy of The Protein Society

RESOURCES