Skip to main content
Protein Science : A Publication of the Protein Society logoLink to Protein Science : A Publication of the Protein Society
. 1996 Apr;5(4):578–592. doi: 10.1002/pro.5560050403

Simulated annealing with restrained molecular dynamics using CONGEN: energy refinement of the NMR solution structures of epidermal and type-alpha transforming growth factors.

R Tejero 1, D Bassolino-Klimas 1, R E Bruccoleri 1, G T Montelione 1
PMCID: PMC2143379  PMID: 8845748

Abstract

The new functionality of the program CONGEN (Bruccoleri RE, Karplus M, 1987, Biopolymers 26:137-168; Bassolino-Klimas D et al., 1996, Protein Sci 5:593-603) has been applied for energy refinement of two previously determined solution NMR structures, murine epidermal growth factor (mEGF) and human type-alpha transforming growth factor (hTGF alpha). A summary of considerations used in converting experimental NMR data into distance constraints for CONGEN is presented. A general protocol for simulated annealing with restrained molecular dynamics is applied to generate NMR solution structures using CONGEN together with real experimental NMR data. A total of 730 NMR-derived constraints for mEGF and 424 NMR-derived constraints for hTGF alpha were used in these energy-refinement calculations. Different weighting schemes and starting conformations were studied to check and/or improve the sampling of the low-energy conformational space that is consistent with all constraints. The results demonstrate that loosened (i.e., "relaxed") sets of the EGF and hTGF alpha internuclear distance constraints allow molecules to overcome local minima in the search for a global minimum with respect to both distance restraints and conformational energy. The resulting energy-refined structures of mEGF and hTGF alpha are compared with structures determined previously and with structures of homologous proteins determined by NMR and X-ray crystallography.

Full Text

The Full Text of this article is available as a PDF (11.1 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Baron M., Norman D. G., Harvey T. S., Handford P. A., Mayhew M., Tse A. G., Brownlee G. G., Campbell I. D. The three-dimensional structure of the first EGF-like module of human factor IX: comparison with EGF and TGF-alpha. Protein Sci. 1992 Jan;1(1):81–90. doi: 10.1002/pro.5560010109. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bassolino-Klimas D., Tejero R., Krystek S. R., Metzler W. J., Montelione G. T., Bruccoleri R. E. Simulated annealing with restrained molecular dynamics using a flexible restraint potential: theory and evaluation with simulated NMR constraints. Protein Sci. 1996 Apr;5(4):593–603. doi: 10.1002/pro.5560050404. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Braun W., Go N. Calculation of protein conformations by proton-proton distance constraints. A new efficient algorithm. J Mol Biol. 1985 Dec 5;186(3):611–626. doi: 10.1016/0022-2836(85)90134-2. [DOI] [PubMed] [Google Scholar]
  4. Bruccoleri R. E., Karplus M. Prediction of the folding of short polypeptide segments by uniform conformational sampling. Biopolymers. 1987 Jan;26(1):137–168. doi: 10.1002/bip.360260114. [DOI] [PubMed] [Google Scholar]
  5. Burgess A. W. Epidermal growth factor and transforming growth factor alpha. Br Med Bull. 1989 Apr;45(2):401–424. doi: 10.1093/oxfordjournals.bmb.a072331. [DOI] [PubMed] [Google Scholar]
  6. COHEN S. Isolation of a mouse submaxillary gland protein accelerating incisor eruption and eyelid opening in the new-born animal. J Biol Chem. 1962 May;237:1555–1562. [PubMed] [Google Scholar]
  7. Carpenter G., Stoscheck C. M., Preston Y. A., DeLarco J. E. Antibodies to the epidermal growth factor receptor block the biological activities of sarcoma growth factor. Proc Natl Acad Sci U S A. 1983 Sep;80(18):5627–5630. doi: 10.1073/pnas.80.18.5627. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Celda B., Biamonti C., Arnau M. J., Tejero R., Montelione G. T. Combined use of 13C chemical shift and 1H alpha-13C alpha heteronuclear NOE data in monitoring a protein NMR structure refinement. J Biomol NMR. 1995 Feb;5(2):161–172. doi: 10.1007/BF00208807. [DOI] [PubMed] [Google Scholar]
  9. Cooke R. M., Wilkinson A. J., Baron M., Pastore A., Tappin M. J., Campbell I. D., Gregory H., Sheard B. The solution structure of human epidermal growth factor. 1987 May 28-Jun 3Nature. 327(6120):339–341. doi: 10.1038/327339a0. [DOI] [PubMed] [Google Scholar]
  10. Fadel A. R., Jin D. Q., Montelione G. T., Levy R. M. Crankshaft motions of the polypeptide backbone in molecular dynamics simulations of human type-alpha transforming growth factor. J Biomol NMR. 1995 Sep;6(2):221–226. doi: 10.1007/BF00211787. [DOI] [PubMed] [Google Scholar]
  11. Graves B. J., Crowther R. L., Chandran C., Rumberger J. M., Li S., Huang K. S., Presky D. H., Familletti P. C., Wolitzky B. A., Burns D. K. Insight into E-selectin/ligand interaction from the crystal structure and mutagenesis of the lec/EGF domains. Nature. 1994 Feb 10;367(6463):532–538. doi: 10.1038/367532a0. [DOI] [PubMed] [Google Scholar]
  12. Groenen L. C., Nice E. C., Burgess A. W. Structure-function relationships for the EGF/TGF-alpha family of mitogens. Growth Factors. 1994;11(4):235–257. doi: 10.3109/08977199409010997. [DOI] [PubMed] [Google Scholar]
  13. Guérin M., Gabillot M., Mathieu M. C., Travagli J. P., Spielmann M., Andrieu N., Riou G. Structure and expression of c-erbB-2 and EGF receptor genes in inflammatory and non-inflammatory breast cancer: prognostic significance. Int J Cancer. 1989 Feb 15;43(2):201–208. doi: 10.1002/ijc.2910430205. [DOI] [PubMed] [Google Scholar]
  14. Hansen A. P., Petros A. M., Meadows R. P., Nettesheim D. G., Mazar A. P., Olejniczak E. T., Xu R. X., Pederson T. M., Henkin J., Fesik S. W. Solution structure of the amino-terminal fragment of urokinase-type plasminogen activator. Biochemistry. 1994 Apr 26;33(16):4847–4864. doi: 10.1021/bi00182a013. [DOI] [PubMed] [Google Scholar]
  15. Harvey T. S., Wilkinson A. J., Tappin M. J., Cooke R. M., Campbell I. D. The solution structure of human transforming growth factor alpha. Eur J Biochem. 1991 Jun 15;198(3):555–562. doi: 10.1111/j.1432-1033.1991.tb16050.x. [DOI] [PubMed] [Google Scholar]
  16. Hommel U., Harvey T. S., Driscoll P. C., Campbell I. D. Human epidermal growth factor. High resolution solution structure and comparison with human transforming growth factor alpha. J Mol Biol. 1992 Sep 5;227(1):271–282. doi: 10.1016/0022-2836(92)90697-i. [DOI] [PubMed] [Google Scholar]
  17. Huang L. H., Cheng H., Pardi A., Tam J. P., Sweeney W. V. Sequence-specific 1H NMR assignments, secondary structure, and location of the calcium binding site in the first epidermal growth factor like domain of blood coagulation factor IX. Biochemistry. 1991 Jul 30;30(30):7402–7409. doi: 10.1021/bi00244a006. [DOI] [PubMed] [Google Scholar]
  18. Hyberts S. G., Goldberg M. S., Havel T. F., Wagner G. The solution structure of eglin c based on measurements of many NOEs and coupling constants and its comparison with X-ray structures. Protein Sci. 1992 Jun;1(6):736–751. doi: 10.1002/pro.5560010606. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Kline T. P., Brown F. K., Brown S. C., Jeffs P. W., Kopple K. D., Mueller L. Solution structures of human transforming growth factor alpha derived from 1H NMR data. Biochemistry. 1990 Aug 28;29(34):7805–7813. doi: 10.1021/bi00486a005. [DOI] [PubMed] [Google Scholar]
  20. Kohda D., Inagaki F. Structure of epidermal growth factor bound to perdeuterated dodecylphosphocholine micelles determined by two-dimensional NMR and simulated annealing calculations. Biochemistry. 1992 Jan 28;31(3):677–685. doi: 10.1021/bi00118a007. [DOI] [PubMed] [Google Scholar]
  21. Li Y. C., Montelione G. T. Human type-alpha transforming growth factor undergoes slow conformational exchange between multiple backbone conformations as characterized by nitrogen-15 relaxation measurements. Biochemistry. 1995 Feb 28;34(8):2408–2423. doi: 10.1021/bi00008a003. [DOI] [PubMed] [Google Scholar]
  22. Montelione G. T., Wüthrich K., Burgess A. W., Nice E. C., Wagner G., Gibson K. D., Scheraga H. A. Solution structure of murine epidermal growth factor determined by NMR spectroscopy and refined by energy minimization with restraints. Biochemistry. 1992 Jan 14;31(1):236–249. doi: 10.1021/bi00116a033. [DOI] [PubMed] [Google Scholar]
  23. Montelione G. T., Wüthrich K., Nice E. C., Burgess A. W., Scheraga H. A. Identification of two anti-parallel beta-sheet conformations in the solution structure of murine epidermal growth factor by proton magnetic resonance. Proc Natl Acad Sci U S A. 1986 Nov;83(22):8594–8598. doi: 10.1073/pnas.83.22.8594. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Montelione G. T., Wüthrich K., Nice E. C., Burgess A. W., Scheraga H. A. Solution structure of murine epidermal growth factor: determination of the polypeptide backbone chain-fold by nuclear magnetic resonance and distance geometry. Proc Natl Acad Sci U S A. 1987 Aug;84(15):5226–5230. doi: 10.1073/pnas.84.15.5226. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Montelione G. T., Wüthrich K., Scheraga H. A. Sequence-specific 1H NMR assignments and identification of slowly exchanging amide protons in murine epidermal growth factor. Biochemistry. 1988 Mar 22;27(6):2235–2243. doi: 10.1021/bi00406a064. [DOI] [PubMed] [Google Scholar]
  26. Moy F. J., Li Y. C., Rauenbuehler P., Winkler M. E., Scheraga H. A., Montelione G. T. Solution structure of human type-alpha transforming growth factor determined by heteronuclear NMR spectroscopy and refined by energy minimization with restraints. Biochemistry. 1993 Jul 27;32(29):7334–7353. doi: 10.1021/bi00080a003. [DOI] [PubMed] [Google Scholar]
  27. Padmanabhan K., Padmanabhan K. P., Tulinsky A., Park C. H., Bode W., Huber R., Blankenship D. T., Cardin A. D., Kisiel W. Structure of human des(1-45) factor Xa at 2.2 A resolution. J Mol Biol. 1993 Aug 5;232(3):947–966. doi: 10.1006/jmbi.1993.1441. [DOI] [PubMed] [Google Scholar]
  28. Selander-Sunnerhagen M., Ullner M., Persson E., Teleman O., Stenflo J., Drakenberg T. How an epidermal growth factor (EGF)-like domain binds calcium. High resolution NMR structure of the calcium form of the NH2-terminal EGF-like domain in coagulation factor X. J Biol Chem. 1992 Sep 25;267(27):19642–19649. doi: 10.2210/pdb1ccf/pdb. [DOI] [PubMed] [Google Scholar]
  29. Simpson R. J., Smith J. A., Moritz R. L., O'Hare M. J., Rudland P. S., Morrison J. R., Lloyd C. J., Grego B., Burgess A. W., Nice E. C. Rat epidermal growth factor: complete amino acid sequence. Homology with the corresponding murine and human proteins; isolation of a form truncated at both ends with full in vitro biological activity. Eur J Biochem. 1985 Dec 16;153(3):629–637. doi: 10.1111/j.1432-1033.1985.tb09346.x. [DOI] [PubMed] [Google Scholar]
  30. Ullner M., Selander M., Persson E., Stenflo J., Drakenberg T., Teleman O. Three-dimensional structure of the apo form of the N-terminal EGF-like module of blood coagulation factor X as determined by NMR spectroscopy and simulated folding. Biochemistry. 1992 Jul 7;31(26):5974–5983. doi: 10.1021/bi00141a004. [DOI] [PubMed] [Google Scholar]
  31. Weis W. I. Lectins on a roll: the structure of E-selectin. Structure. 1994 Mar 15;2(3):147–150. doi: 10.1016/s0969-2126(00)00016-2. [DOI] [PubMed] [Google Scholar]

Articles from Protein Science : A Publication of the Protein Society are provided here courtesy of The Protein Society

RESOURCES