Skip to main content
Protein Science : A Publication of the Protein Society logoLink to Protein Science : A Publication of the Protein Society
. 1996 Apr;5(4):593–603. doi: 10.1002/pro.5560050404

Simulated annealing with restrained molecular dynamics using a flexible restraint potential: theory and evaluation with simulated NMR constraints.

D Bassolino-Klimas 1, R Tejero 1, S R Krystek 1, W J Metzler 1, G T Montelione 1, R E Bruccoleri 1
PMCID: PMC2143380  PMID: 8845749

Abstract

A new functional representation of NMR-derived distance constraints, the flexible restraint potential, has been implemented in the program CONGEN (Bruccoleri RE, Karplus M, 1987, Biopolymers 26:137-168) for molecular structure generation. In addition, flat-bottomed restraint potentials for representing dihedral angle and vicinal scalar coupling constraints have been introduced into CONGEN. An effective simulated annealing (SA) protocol that combines both weight annealing and temperature annealing is described. Calculations have been performed using ideal simulated NMR constraints, in order to evaluate the use of restrained molecular dynamics (MD) with these target functions as implemented in CONGEN. In this benchmark study, internuclear distance, dihedral angle, and vicinal coupling constant constraints were calculated from the energy-minimized X-ray crystal structure of the 46-amino acid polypeptide crambin (ICRN). Three-dimensional structures of crambin that satisfy these simulated NMR constraints were generated using restrained MD and SA. Polypeptide structures with extended backbone and side-chain conformations were used as starting conformations. Dynamical annealing calculations using extended starting conformations and assignments of initial velocities taken randomly from a Maxwellian distribution were found to adequately sample the conformational space consistent with the constraints. These calculations also show that loosened internuclear constraints can allow molecules to overcome local minima in the search for a global minimum with respect to both the NMR-derived constraints and conformational energy. This protocol and the modified version of the CONGEN program described here are shown to be reliable and robust, and are applicable generally for protein structure determination by dynamical simulated annealing using NMR data.

Full Text

The Full Text of this article is available as a PDF (2.2 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Brünger A. T., Clore G. M., Gronenborn A. M., Karplus M. Three-dimensional structure of proteins determined by molecular dynamics with interproton distance restraints: application to crambin. Proc Natl Acad Sci U S A. 1986 Jun;83(11):3801–3805. doi: 10.1073/pnas.83.11.3801. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Celda B., Biamonti C., Arnau M. J., Tejero R., Montelione G. T. Combined use of 13C chemical shift and 1H alpha-13C alpha heteronuclear NOE data in monitoring a protein NMR structure refinement. J Biomol NMR. 1995 Feb;5(2):161–172. doi: 10.1007/BF00208807. [DOI] [PubMed] [Google Scholar]
  3. Clore G. M., Gronenborn A. M. Structures of larger proteins in solution: three- and four-dimensional heteronuclear NMR spectroscopy. Science. 1991 Jun 7;252(5011):1390–1399. doi: 10.1126/science.2047852. [DOI] [PubMed] [Google Scholar]
  4. Clore G. M., Gronenborn A. M. Young Investigator Award Lecture. Structures of larger proteins, protein-ligand and protein-DNA complexes by multidimensional heteronuclear NMR. Protein Sci. 1994 Mar;3(3):372–390. doi: 10.1002/pro.5560030302. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Constantine K. L., Friedrichs M. S., Mueller L., Bruccoleri R. E. J-coupling restraint potentials for nonstereospecifically assigned methylene protons and ensemble-average calculations. J Magn Reson B. 1995 Aug;108(2):176–184. doi: 10.1006/jmrb.1995.1120. [DOI] [PubMed] [Google Scholar]
  6. Driscoll P. C., Gronenborn A. M., Beress L., Clore G. M. Determination of the three-dimensional solution structure of the antihypertensive and antiviral protein BDS-I from the sea anemone Anemonia sulcata: a study using nuclear magnetic resonance and hybrid distance geometry-dynamical simulated annealing. Biochemistry. 1989 Mar 7;28(5):2188–2198. doi: 10.1021/bi00431a033. [DOI] [PubMed] [Google Scholar]
  7. Folkers P. J., Clore G. M., Driscoll P. C., Dodt J., Köhler S., Gronenborn A. M. Solution structure of recombinant hirudin and the Lys-47----Glu mutant: a nuclear magnetic resonance and hybrid distance geometry-dynamical simulated annealing study. Biochemistry. 1989 Mar 21;28(6):2601–2617. doi: 10.1021/bi00432a038. [DOI] [PubMed] [Google Scholar]
  8. Garrett D. S., Kuszewski J., Hancock T. J., Lodi P. J., Vuister G. W., Gronenborn A. M., Clore G. M. The impact of direct refinement against three-bond HN-C alpha H coupling constants on protein structure determination by NMR. J Magn Reson B. 1994 May;104(1):99–103. doi: 10.1006/jmrb.1994.1061. [DOI] [PubMed] [Google Scholar]
  9. Güntert P., Braun W., Wüthrich K. Efficient computation of three-dimensional protein structures in solution from nuclear magnetic resonance data using the program DIANA and the supporting programs CALIBA, HABAS and GLOMSA. J Mol Biol. 1991 Feb 5;217(3):517–530. doi: 10.1016/0022-2836(91)90754-t. [DOI] [PubMed] [Google Scholar]
  10. Hare D. R., Reid B. R. Three-dimensional structure of a DNA hairpin in solution: two-dimensional NMR studies and distance geometry calculations on d(CGCGTTTTCGCG). Biochemistry. 1986 Sep 9;25(18):5341–5350. doi: 10.1021/bi00366a053. [DOI] [PubMed] [Google Scholar]
  11. Havel T. F. The sampling properties of some distance geometry algorithms applied to unconstrained polypeptide chains: a study of 1830 independently computed conformations. Biopolymers. 1990 Oct-Nov;29(12-13):1565–1585. doi: 10.1002/bip.360291207. [DOI] [PubMed] [Google Scholar]
  12. Havel T. F., Wüthrich K. An evaluation of the combined use of nuclear magnetic resonance and distance geometry for the determination of protein conformations in solution. J Mol Biol. 1985 Mar 20;182(2):281–294. doi: 10.1016/0022-2836(85)90346-8. [DOI] [PubMed] [Google Scholar]
  13. Kim Y., Prestegard J. H. Refinement of the NMR structures for acyl carrier protein with scalar coupling data. Proteins. 1990;8(4):377–385. doi: 10.1002/prot.340080411. [DOI] [PubMed] [Google Scholar]
  14. Lautz J., Kessler H., Blaney J. M., Scheek R. M., Van Gunsteren W. F. Calculating three-dimensional molecular structure from atom-atom distance information: cyclosporin A. Int J Pept Protein Res. 1989 Apr;33(4):281–288. doi: 10.1111/j.1399-3011.1989.tb01283.x. [DOI] [PubMed] [Google Scholar]
  15. Levy R. M., Bassolino D. A., Kitchen D. B., Pardi A. Solution structures of proteins from NMR data and modeling: alternative folds for neutrophil peptide 5. Biochemistry. 1989 Nov 28;28(24):9361–9372. doi: 10.1021/bi00450a017. [DOI] [PubMed] [Google Scholar]
  16. Metzler W. J., Hare D. R., Pardi A. Limited sampling of conformational space by the distance geometry algorithm: implications for structures generated from NMR data. Biochemistry. 1989 Aug 22;28(17):7045–7052. doi: 10.1021/bi00443a040. [DOI] [PubMed] [Google Scholar]
  17. Montelione G. T., Emerson S. D., Lyons B. A. A general approach for determining scalar coupling constants in polypeptides and proteins. Biopolymers. 1992 Apr;32(4):327–334. doi: 10.1002/bip.360320406. [DOI] [PubMed] [Google Scholar]
  18. Newkirk K., Feng W., Jiang W., Tejero R., Emerson S. D., Inouye M., Montelione G. T. Solution NMR structure of the major cold shock protein (CspA) from Escherichia coli: identification of a binding epitope for DNA. Proc Natl Acad Sci U S A. 1994 May 24;91(11):5114–5118. doi: 10.1073/pnas.91.11.5114. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Nilges M., Clore G. M., Gronenborn A. M. 1H-NMR stereospecific assignments by conformational data-base searches. Biopolymers. 1990 Mar-Apr;29(4-5):813–822. doi: 10.1002/bip.360290415. [DOI] [PubMed] [Google Scholar]
  20. Nilges M., Clore G. M., Gronenborn A. M. Determination of three-dimensional structures of proteins from interproton distance data by hybrid distance geometry-dynamical simulated annealing calculations. FEBS Lett. 1988 Mar 14;229(2):317–324. doi: 10.1016/0014-5793(88)81148-7. [DOI] [PubMed] [Google Scholar]
  21. Pardi A., Billeter M., Wüthrich K. Calibration of the angular dependence of the amide proton-C alpha proton coupling constants, 3JHN alpha, in a globular protein. Use of 3JHN alpha for identification of helical secondary structure. J Mol Biol. 1984 Dec 15;180(3):741–751. doi: 10.1016/0022-2836(84)90035-4. [DOI] [PubMed] [Google Scholar]
  22. Teeter M. M., Roe S. M., Heo N. H. Atomic resolution (0.83 A) crystal structure of the hydrophobic protein crambin at 130 K. J Mol Biol. 1993 Mar 5;230(1):292–311. doi: 10.1006/jmbi.1993.1143. [DOI] [PubMed] [Google Scholar]
  23. Tejero R., Bassolino-Klimas D., Bruccoleri R. E., Montelione G. T. Simulated annealing with restrained molecular dynamics using CONGEN: energy refinement of the NMR solution structures of epidermal and type-alpha transforming growth factors. Protein Sci. 1996 Apr;5(4):578–592. doi: 10.1002/pro.5560050403. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Ulyanov N. B., Schmitz U., James T. L. Metropolis Monte Carlo calculations of DNA structure using internal coordinates and NMR distance restraints: an alternative method for generating a high-resolution solution structure. J Biomol NMR. 1993 Sep;3(5):547–568. doi: 10.1007/BF00174609. [DOI] [PubMed] [Google Scholar]
  25. Wlodawer A., Walter J., Huber R., Sjölin L. Structure of bovine pancreatic trypsin inhibitor. Results of joint neutron and X-ray refinement of crystal form II. J Mol Biol. 1984 Dec 5;180(2):301–329. doi: 10.1016/s0022-2836(84)80006-6. [DOI] [PubMed] [Google Scholar]

Articles from Protein Science : A Publication of the Protein Society are provided here courtesy of The Protein Society

RESOURCES