Skip to main content
Protein Science : A Publication of the Protein Society logoLink to Protein Science : A Publication of the Protein Society
. 1996 Apr;5(4):663–671. doi: 10.1002/pro.5560050410

Crystal structure of cod liver class I alcohol dehydrogenase: substrate pocket and structurally variable segments.

S Ramaswamy 1, M el Ahmad 1, O Danielsson 1, H Jörnvall 1, H Eklund 1
PMCID: PMC2143387  PMID: 8845755

Abstract

The structural framework of cod liver alcohol dehydrogenase is similar to that of horse and human alcohol dehydrogenases. In contrast, the substrate pocket differs significantly, and main differences are located in three loops. Nevertheless, the substrate pocket is hydrophobic like that of the mammalian class I enzymes and has a similar topography in spite of many main-chain and side-chain differences. The structural framework of alcohol dehydrogenase is also present in a number of related enzymes like glucose dehydrogenase and quinone oxidoreductase. These enzymes have completely different substrate specificity, but also for these enzymes, the corresponding loops of the substrate pocket have significantly different structures. The domains of the two subunits in the crystals of the cod enzyme further differ by a rotation of the catalytic domains by about 6 degrees. In one subunit, they close around the coenzyme similarly as in coenzyme complexes of the horse enzyme, but form a more open cleft in the other subunit, similar to the situation in coenzyme-free structures of the horse enzyme. The proton relay system differs from the mammalian class I alcohol dehydrogenases. His 51, which has been implicated in mammalian enzymes to be important for proton transfer from the buried active site to the surface is not present in the cod enzyme. A tyrosine in the corresponding position is turned into the substrate pocket and a water molecule occupies the same position in space as the His side chain, forming a shorter proton relay system.

Full Text

The Full Text of this article is available as a PDF (3.3 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Al-Karadaghi S., Cedergren-Zeppezauer E. S., Hövmoller S. Refined crystal structure of liver alcohol dehydrogenase-NADH complex at 1.8 A resolution. Acta Crystallogr D Biol Crystallogr. 1994 Nov 1;50(Pt 6):793–807. doi: 10.1107/S0907444994005263. [DOI] [PubMed] [Google Scholar]
  2. Brünger A. T. Assessment of phase accuracy by cross validation: the free R value. Methods and applications. Acta Crystallogr D Biol Crystallogr. 1993 Jan 1;49(Pt 1):24–36. doi: 10.1107/S0907444992007352. [DOI] [PubMed] [Google Scholar]
  3. Brünger A. T., Kuriyan J., Karplus M. Crystallographic R factor refinement by molecular dynamics. Science. 1987 Jan 23;235(4787):458–460. doi: 10.1126/science.235.4787.458. [DOI] [PubMed] [Google Scholar]
  4. Cedergren-Zeppezauer E., Samama J. P., Eklund H. Crystal structure determinations of coenzyme analogue and substrate complexes of liver alcohol dehydrogenase: binding of 1,4,5,6-tetrahydronicotinamide adenine dinucleotide and trans-4-(N,N-dimethylamino)cinnamaldehyde to the enzyme. Biochemistry. 1982 Sep 28;21(20):4895–4908. doi: 10.1021/bi00263a011. [DOI] [PubMed] [Google Scholar]
  5. Colonna-Cesari F., Perahia D., Karplus M., Eklund H., Brädén C. I., Tapia O. Interdomain motion in liver alcohol dehydrogenase. Structural and energetic analysis of the hinge bending mode. J Biol Chem. 1986 Nov 15;261(32):15273–15280. [PubMed] [Google Scholar]
  6. Danielsson O., Eklund H., Jörnvall H. The major piscine liver alcohol dehydrogenase has class-mixed properties in relation to mammalian alcohol dehydrogenases of classes I and III. Biochemistry. 1992 Apr 21;31(15):3751–3759. doi: 10.1021/bi00130a004. [DOI] [PubMed] [Google Scholar]
  7. Danielsson O., Shafqat J., Estonius M., Jörnvall H. Alcohol dehydrogenase class III contrasted to class I. Characterization of the cyclostome enzyme, the existence of multiple forms as for the human enzyme, and distant cross-species hybridization. Eur J Biochem. 1994 Nov 1;225(3):1081–1088. doi: 10.1111/j.1432-1033.1994.1081b.x. [DOI] [PubMed] [Google Scholar]
  8. Ehrig T., Hurley T. D., Edenberg H. J., Bosron W. F. General base catalysis in a glutamine for histidine mutant at position 51 of human liver alcohol dehydrogenase. Biochemistry. 1991 Jan 29;30(4):1062–1068. doi: 10.1021/bi00218a026. [DOI] [PubMed] [Google Scholar]
  9. Eklund H., Horjales E., Jörnvall H., Brändén C. I., Jeffery J. Molecular aspects of functional differences between alcohol and sorbitol dehydrogenases. Biochemistry. 1985 Dec 31;24(27):8005–8012. doi: 10.1021/bi00348a025. [DOI] [PubMed] [Google Scholar]
  10. Eklund H., Müller-Wille P., Horjales E., Futer O., Holmquist B., Vallee B. L., Hög J. O., Kaiser R., Jörnvall H. Comparison of three classes of human liver alcohol dehydrogenase. Emphasis on different substrate binding pockets. Eur J Biochem. 1990 Oct 24;193(2):303–310. doi: 10.1111/j.1432-1033.1990.tb19337.x. [DOI] [PubMed] [Google Scholar]
  11. Eklund H., Nordström B., Zeppezauer E., Söderlund G., Ohlsson I., Boiwe T., Söderberg B. O., Tapia O., Brändén C. I., Akeson A. Three-dimensional structure of horse liver alcohol dehydrogenase at 2-4 A resolution. J Mol Biol. 1976 Mar 25;102(1):27–59. doi: 10.1016/0022-2836(76)90072-3. [DOI] [PubMed] [Google Scholar]
  12. Eklund H., Plapp B. V., Samama J. P., Brändén C. I. Binding of substrate in a ternary complex of horse liver alcohol dehydrogenase. J Biol Chem. 1982 Dec 10;257(23):14349–14358. [PubMed] [Google Scholar]
  13. Eklund H., Samama J. P., Jones T. A. Crystallographic investigations of nicotinamide adenine dinucleotide binding to horse liver alcohol dehydrogenase. Biochemistry. 1984 Dec 4;23(25):5982–5996. doi: 10.1021/bi00320a014. [DOI] [PubMed] [Google Scholar]
  14. Eklund H., Samma J. P., Wallén L., Brändén C. I., Akeson A., Jones T. A. Structure of a triclinic ternary complex of horse liver alcohol dehydrogenase at 2.9 A resolution. J Mol Biol. 1981 Mar 15;146(4):561–587. doi: 10.1016/0022-2836(81)90047-4. [DOI] [PubMed] [Google Scholar]
  15. Hurley T. D., Bosron W. F., Hamilton J. A., Amzel L. M. Structure of human beta 1 beta 1 alcohol dehydrogenase: catalytic effects of non-active-site substitutions. Proc Natl Acad Sci U S A. 1991 Sep 15;88(18):8149–8153. doi: 10.1073/pnas.88.18.8149. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Hög J. O., Eklund H., Jörnvall H. A single-residue exchange gives human recombinant beta beta alcohol dehydrogenase gamma gamma isozyme properties. Eur J Biochem. 1992 Apr 15;205(2):519–526. doi: 10.1111/j.1432-1033.1992.tb16808.x. [DOI] [PubMed] [Google Scholar]
  17. John J., Crennell S. J., Hough D. W., Danson M. J., Taylor G. L. The crystal structure of glucose dehydrogenase from Thermoplasma acidophilum. Structure. 1994 May 15;2(5):385–393. doi: 10.1016/s0969-2126(00)00040-x. [DOI] [PubMed] [Google Scholar]
  18. Jones T. A., Zou J. Y., Cowan S. W., Kjeldgaard M. Improved methods for building protein models in electron density maps and the location of errors in these models. Acta Crystallogr A. 1991 Mar 1;47(Pt 2):110–119. doi: 10.1107/s0108767390010224. [DOI] [PubMed] [Google Scholar]
  19. Jörnvall H., Hög J. O. Nomenclature of alcohol dehydrogenases. Alcohol Alcohol. 1995 Mar;30(2):153–161. [PubMed] [Google Scholar]
  20. Jörnvall H., Hög J. O., von Bahr-Lindström H., Vallee B. L. Mammalian alcohol dehydrogenases of separate classes: intermediates between different enzymes and intraclass isozymes. Proc Natl Acad Sci U S A. 1987 May;84(9):2580–2584. doi: 10.1073/pnas.84.9.2580. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Lamzin V. S., Wilson K. S. Automated refinement of protein models. Acta Crystallogr D Biol Crystallogr. 1993 Jan 1;49(Pt 1):129–147. doi: 10.1107/S0907444992008886. [DOI] [PubMed] [Google Scholar]
  22. Persson B., Zigler J. S., Jr, Jörnvall H. A super-family of medium-chain dehydrogenases/reductases (MDR). Sub-lines including zeta-crystallin, alcohol and polyol dehydrogenases, quinone oxidoreductase enoyl reductases, VAT-1 and other proteins. Eur J Biochem. 1994 Nov 15;226(1):15–22. doi: 10.1111/j.1432-1033.1994.tb20021.x. [DOI] [PubMed] [Google Scholar]
  23. Plapp B. V. Site-directed mutagenesis: a tool for studying enzyme catalysis. Methods Enzymol. 1995;249:91–119. doi: 10.1016/0076-6879(95)49032-9. [DOI] [PubMed] [Google Scholar]
  24. Ramaswamy S., el-Ahmad M., Danielsson O., Jörnvall H., Eklund H. Crystallisation and crystallographic investigations of cod alcohol dehydrogenase class I and class III enzymes. FEBS Lett. 1994 Aug 15;350(1):122–124. doi: 10.1016/0014-5793(94)00746-2. [DOI] [PubMed] [Google Scholar]
  25. Samama J. P., Zeppezauer E., Biellmann J. F., Brändén C. I. The crystal structure of complexes between horse liver alcohol dehydrogenase and the coenzyme analogues 3-iodopyridine-adenine dinucleotide and pyridine-adenine dinucleotide. Eur J Biochem. 1977 Dec 1;81(2):403–409. doi: 10.1111/j.1432-1033.1977.tb11965.x. [DOI] [PubMed] [Google Scholar]

Articles from Protein Science : A Publication of the Protein Society are provided here courtesy of The Protein Society

RESOURCES