Skip to main content
Protein Science : A Publication of the Protein Society logoLink to Protein Science : A Publication of the Protein Society
. 1996 Apr;5(4):653–662. doi: 10.1002/pro.5560050409

The pH dependence of hydrogen-deuterium exchange in trp repressor: the exchange rate of amide protons in proteins reflects tertiary interactions, not only secondary structure.

M D Finucane 1, O Jardetzky 1
PMCID: PMC2143392  PMID: 8845754

Abstract

The pH dependence of amide proton exchange rates have been measured for trp-repressor. One class of protons exchanges too fast to be measured in these experiments. Among the protons that have measurable hydrogen-deuterium exchange rates, two additional classes may be distinguished. The second class of protons are in elements of secondary structure that are mostly on the surface of the protein, and exchange linearly with increasing base concentration (log kex versus pH). The third class of amide protons is characterized by much higher protection against exchange at higher pH. These protons are located in the core of the protein, in helices B and C. The exchange rate in the core region does not increase linearly with pH, but rather goes through a minimum around pH 6. The mechanism of exchange for the slowly exchanging core protons is interpreted in terms of the two-process model of Hilton and Woodward (1979, Biochemistry 18:5834-5841), i.e., exchange through both a local mechanism that does not require unfolding of the protein, and a mechanism involving global unfolding of the protein. The increase in exchange rates at low pH is attributed to a partial unfolding of the repressor. It is concluded that the formation of secondary structure alone is insufficient to account for the high protection factors seen in the core of native proteins at higher pH, and that tertiary interactions are essential to stabilize the structure.

Full Text

The Full Text of this article is available as a PDF (4.2 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arrowsmith C., Pachter R., Altman R., Jardetzky O. The solution structures of Escherichia coli trp repressor and trp aporepressor at an intermediate resolution. Eur J Biochem. 1991 Nov 15;202(1):53–66. doi: 10.1111/j.1432-1033.1991.tb16344.x. [DOI] [PubMed] [Google Scholar]
  2. Bai Y., Milne J. S., Mayne L., Englander S. W. Primary structure effects on peptide group hydrogen exchange. Proteins. 1993 Sep;17(1):75–86. doi: 10.1002/prot.340170110. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Barlow D. J., Thornton J. M. Helix geometry in proteins. J Mol Biol. 1988 Jun 5;201(3):601–619. doi: 10.1016/0022-2836(88)90641-9. [DOI] [PubMed] [Google Scholar]
  4. Czaplicki J., Arrowsmith C., Jardetzky O. Segmental differences in the stability of the trp-repressor peptide backbone. J Biomol NMR. 1991 Nov;1(4):349–361. doi: 10.1007/BF02192859. [DOI] [PubMed] [Google Scholar]
  5. Elöve G. A., Chaffotte A. F., Roder H., Goldberg M. E. Early steps in cytochrome c folding probed by time-resolved circular dichroism and fluorescence spectroscopy. Biochemistry. 1992 Aug 4;31(30):6876–6883. doi: 10.1021/bi00145a003. [DOI] [PubMed] [Google Scholar]
  6. Englander S. W., Calhoun D. B., Englander J. J., Kallenbach N. R., Liem R. K., Malin E. L., Mandal C., Rogero J. R. Individual breathing reactions measured in hemoglobin by hydrogen exchange methods. Biophys J. 1980 Oct;32(1):577–589. doi: 10.1016/S0006-3495(80)84991-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Englander S. W., Mayne L. Protein folding studied using hydrogen-exchange labeling and two-dimensional NMR. Annu Rev Biophys Biomol Struct. 1992;21:243–265. doi: 10.1146/annurev.bb.21.060192.001331. [DOI] [PubMed] [Google Scholar]
  8. Englander S. W. Measurement of structural and free energy changes in hemoglobin by hydrogen exchange methods. Ann N Y Acad Sci. 1975 Apr 15;244:10–27. doi: 10.1111/j.1749-6632.1975.tb41518.x. [DOI] [PubMed] [Google Scholar]
  9. Finucane M. D., Jardetzky O. Mechanism of hydrogen-deuterium exchange in trp repressor studied by 1H-15N NMR. J Mol Biol. 1995 Nov 3;253(4):576–589. doi: 10.1006/jmbi.1995.0574. [DOI] [PubMed] [Google Scholar]
  10. Goodman E. M., Kim P. S. Periodicity of amide proton exchange rates in a coiled-coil leucine zipper peptide. Biochemistry. 1991 Dec 17;30(50):11615–11620. doi: 10.1021/bi00114a002. [DOI] [PubMed] [Google Scholar]
  11. Gryk M. R., Finucane M. D., Zheng Z., Jardetzky O. Solution dynamics of the trp repressor: a study of amide proton exchange by T1 relaxation. J Mol Biol. 1995 Mar 10;246(5):618–627. doi: 10.1016/s0022-2836(05)80111-1. [DOI] [PubMed] [Google Scholar]
  12. Gryk M. R., Jardetzky O. AV77 hinge mutation stabilizes the helix-turn-helix domain of trp repressor. J Mol Biol. 1996 Jan 12;255(1):204–214. doi: 10.1006/jmbi.1996.0017. [DOI] [PubMed] [Google Scholar]
  13. Guijarro J. I., Jackson M., Chaffotte A. F., Delepierre M., Mantsch H. H., Goldberg M. E. Protein folding intermediates with rapidly exchangeable amide protons contain authentic hydrogen-bonded secondary structures. Biochemistry. 1995 Mar 7;34(9):2998–3008. doi: 10.1021/bi00009a031. [DOI] [PubMed] [Google Scholar]
  14. Hilton B. D., Woodward C. K. On the mechanism of isotope exchange kinetics of single protons in bovine pancreatic trypsin inhibitor. Biochemistry. 1979 Dec 25;18(26):5834–5841. doi: 10.1021/bi00593a013. [DOI] [PubMed] [Google Scholar]
  15. Hvidt A., Nielsen S. O. Hydrogen exchange in proteins. Adv Protein Chem. 1966;21:287–386. doi: 10.1016/s0065-3233(08)60129-1. [DOI] [PubMed] [Google Scholar]
  16. Joachimiak A., Kelley R. L., Gunsalus R. P., Yanofsky C., Sigler P. B. Purification and characterization of trp aporepressor. Proc Natl Acad Sci U S A. 1983 Feb;80(3):668–672. doi: 10.1073/pnas.80.3.668. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Kim K. S., Fuchs J. A., Woodward C. K. Hydrogen exchange identifies native-state motional domains important in protein folding. Biochemistry. 1993 Sep 21;32(37):9600–9608. doi: 10.1021/bi00088a012. [DOI] [PubMed] [Google Scholar]
  18. Linse S., Teleman O., Drakenberg T. Ca2+ binding to calbindin D9k strongly affects backbone dynamics: measurements of exchange rates of individual amide protons using 1H NMR. Biochemistry. 1990 Jun 26;29(25):5925–5934. doi: 10.1021/bi00477a007. [DOI] [PubMed] [Google Scholar]
  19. Miller D. W., Dill K. A. A statistical mechanical model for hydrogen exchange in globular proteins. Protein Sci. 1995 Sep;4(9):1860–1873. doi: 10.1002/pro.5560040921. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Molday R. S., Englander S. W., Kallen R. G. Primary structure effects on peptide group hydrogen exchange. Biochemistry. 1972 Jan 18;11(2):150–158. doi: 10.1021/bi00752a003. [DOI] [PubMed] [Google Scholar]
  21. Paluh J. L., Yanofsky C. High level production and rapid purification of the E. coli trp repressor. Nucleic Acids Res. 1986 Oct 24;14(20):7851–7860. doi: 10.1093/nar/14.20.7851. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Pedersen T. G., Thomsen N. K., Andersen K. V., Madsen J. C., Poulsen F. M. Determination of the rate constants k1 and k2 of the Linderström-Lang model for protein amide hydrogen exchange. A study of the individual amides in hen egg-white lysozyme. J Mol Biol. 1993 Mar 20;230(2):651–660. doi: 10.1006/jmbi.1993.1176. [DOI] [PubMed] [Google Scholar]
  23. Ptitsyn O. B. How the molten globule became. Trends Biochem Sci. 1995 Sep;20(9):376–379. doi: 10.1016/s0968-0004(00)89081-7. [DOI] [PubMed] [Google Scholar]
  24. Radford S. E., Buck M., Topping K. D., Dobson C. M., Evans P. A. Hydrogen exchange in native and denatured states of hen egg-white lysozyme. Proteins. 1992 Oct;14(2):237–248. doi: 10.1002/prot.340140210. [DOI] [PubMed] [Google Scholar]
  25. Roder H., Wagner G., Wüthrich K. Amide proton exchange in proteins by EX1 kinetics: studies of the basic pancreatic trypsin inhibitor at variable p2H and temperature. Biochemistry. 1985 Dec 3;24(25):7396–7407. doi: 10.1021/bi00346a055. [DOI] [PubMed] [Google Scholar]
  26. Roder H., Wagner G., Wüthrich K. Individual amide proton exchange rates in thermally unfolded basic pancreatic trypsin inhibitor. Biochemistry. 1985 Dec 3;24(25):7407–7411. doi: 10.1021/bi00346a056. [DOI] [PubMed] [Google Scholar]
  27. Tüchsen E., Woodward C. Hydrogen exchange kinetics of surface peptide amides in bovine pancreatic trypsin inhibitor. J Mol Biol. 1987 Feb 20;193(4):793–802. doi: 10.1016/0022-2836(87)90359-7. [DOI] [PubMed] [Google Scholar]
  28. Woodward C. K., Hilton B. D. Hydrogen isotope exchange kinetics of single protons in bovine pancreatic trypsin inhibitor. Biophys J. 1980 Oct;32(1):561–575. doi: 10.1016/S0006-3495(80)84990-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Woodward C. Is the slow exchange core the protein folding core? Trends Biochem Sci. 1993 Oct;18(10):359–360. doi: 10.1016/0968-0004(93)90086-3. [DOI] [PubMed] [Google Scholar]
  30. Zhang R. G., Joachimiak A., Lawson C. L., Schevitz R. W., Otwinowski Z., Sigler P. B. The crystal structure of trp aporepressor at 1.8 A shows how binding tryptophan enhances DNA affinity. Nature. 1987 Jun 18;327(6123):591–597. doi: 10.1038/327591a0. [DOI] [PubMed] [Google Scholar]
  31. Zhao D., Arrowsmith C. H., Jia X., Jardetzky O. Refined solution structures of the Escherichia coli trp holo- and aporepressor. J Mol Biol. 1993 Feb 5;229(3):735–746. doi: 10.1006/jmbi.1993.1076. [DOI] [PubMed] [Google Scholar]
  32. Zheng Z., Gryk M. R., Finucane M. D., Jardetzky O. Investigation of protein amide-proton exchange by 1H longitudinal spin relaxation. J Magn Reson B. 1995 Sep;108(3):220–234. doi: 10.1006/jmrb.1995.1127. [DOI] [PubMed] [Google Scholar]

Articles from Protein Science : A Publication of the Protein Society are provided here courtesy of The Protein Society

RESOURCES