Skip to main content
Protein Science : A Publication of the Protein Society logoLink to Protein Science : A Publication of the Protein Society
. 1996 Apr;5(4):672–679. doi: 10.1002/pro.5560050411

Soluble monomeric acetylcholinesterase from mouse: expression, purification, and crystallization in complex with fasciculin.

P Marchot 1, R B Ravelli 1, M L Raves 1, Y Bourne 1, D C Vellom 1, J Kanter 1, S Camp 1, J L Sussman 1, P Taylor 1
PMCID: PMC2143397  PMID: 8845756

Abstract

A soluble, monomeric form of acetylcholinesterase from mouse (mAChE), truncated at its carboxyl-terminal end, was generated from a cDNA encoding the glycophospholipid-linked form of the mouse enzyme by insertion of an early stop codon at position 549. Insertion of the cDNA behind a cytomegalovirus promoter and selection by aminoglycoside resistance in transfected HEK cells yielded clones secreting large quantities of mAChE into the medium. The enzyme sediments as a soluble monomer at 4.8 S. High levels of expression coupled with a one-step purification by affinity chromatography have allowed us to undertake a crystallographic study of the fasciculin-mAChE complex. Complexes of two distinct fasciculins, Fas1-mAChE and Fas2-mAChE, were formed prior to the crystallization and were characterized thoroughly. Single hexagonal crystals, up to 0.6 mm x 0.5 mm x 0.5 mm, grew spontaneously from ammonium sulfate solutions buffered in the pH 7.0 range. They were found by electrophoretic migration to consist entirely of the complex and diffracted to 2.8 A resolution. Analysis of initial X-ray data collected on Fas2-mAChE crystals identified the space group as P6(1)22 or P6(5)22 with unit cell dimensions a = b = 75.5 A, c = 556 A, giving a Vm value of 3.1 A3/Da (or 60% of solvent), consistent with a single molecule of Fas2-AChE complex (72 kDa) per asymmetric unit. The complex Fas1-mAChE crystallizes in the same space group with identical cell dimensions.

Full Text

The Full Text of this article is available as a PDF (2.6 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adem A., Asblom A., Johansson G., Mbugua P. M., Karlsson E. Toxins from the venom of the green mamba Dendroaspis angusticeps that inhibit the binding of quinuclidinyl benzilate to muscarinic acetylcholine receptors. Biochim Biophys Acta. 1988 Mar 11;968(3):340–345. doi: 10.1016/0167-4889(88)90025-0. [DOI] [PubMed] [Google Scholar]
  2. Bougis P., Rochat H., Piéroni G., Verger R. Penetration of phospholipid monolayers by cardiotoxins. Biochemistry. 1981 Aug 18;20(17):4915–4920. doi: 10.1021/bi00520a017. [DOI] [PubMed] [Google Scholar]
  3. Bourne Y., Taylor P., Marchot P. Acetylcholinesterase inhibition by fasciculin: crystal structure of the complex. Cell. 1995 Nov 3;83(3):503–512. doi: 10.1016/0092-8674(95)90128-0. [DOI] [PubMed] [Google Scholar]
  4. Camp S., Bon S., Li Y., Getman D. K., Engel A. G., Massoulié J., Taylor P. Patients with congenital myasthenia associated with end-plate acetylcholinesterase deficiency show normal sequence, mRNA splicing, and assembly of catalytic subunits. J Clin Invest. 1995 Jan;95(1):333–340. doi: 10.1172/JCI117661. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Changeux J. P., Kasai M., Lee C. Y. Use of a snake venom toxin to characterize the cholinergic receptor protein. Proc Natl Acad Sci U S A. 1970 Nov;67(3):1241–1247. doi: 10.1073/pnas.67.3.1241. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Duval N., Krejci E., Grassi J., Coussen F., Massoulié J., Bon S. Molecular architecture of acetylcholinesterase collagen-tailed forms; construction of a glycolipid-tailed tetramer. EMBO J. 1992 Sep;11(9):3255–3261. doi: 10.1002/j.1460-2075.1992.tb05403.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. ELLMAN G. L., COURTNEY K. D., ANDRES V., Jr, FEATHER-STONE R. M. A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem Pharmacol. 1961 Jul;7:88–95. doi: 10.1016/0006-2952(61)90145-9. [DOI] [PubMed] [Google Scholar]
  8. Eastman J., Wilson E. J., Cerveñansky C., Rosenberry T. L. Fasciculin 2 binds to the peripheral site on acetylcholinesterase and inhibits substrate hydrolysis by slowing a step involving proton transfer during enzyme acylation. J Biol Chem. 1995 Aug 25;270(34):19694–19701. doi: 10.1074/jbc.270.34.19694. [DOI] [PubMed] [Google Scholar]
  9. Harel M., Kleywegt G. J., Ravelli R. B., Silman I., Sussman J. L. Crystal structure of an acetylcholinesterase-fasciculin complex: interaction of a three-fingered toxin from snake venom with its target. Structure. 1995 Dec 15;3(12):1355–1366. doi: 10.1016/s0969-2126(01)00273-8. [DOI] [PubMed] [Google Scholar]
  10. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  11. Li Y., Camp S., Rachinsky T. L., Getman D., Taylor P. Gene structure of mammalian acetylcholinesterase. Alternative exons dictate tissue-specific expression. J Biol Chem. 1991 Dec 5;266(34):23083–23090. [PubMed] [Google Scholar]
  12. Li Y., Camp S., Taylor P. Tissue-specific expression and alternative mRNA processing of the mammalian acetylcholinesterase gene. J Biol Chem. 1993 Mar 15;268(8):5790–5797. [PubMed] [Google Scholar]
  13. Marchot P., Khélif A., Ji Y. H., Mansuelle P., Bougis P. E. Binding of 125I-fasciculin to rat brain acetylcholinesterase. The complex still binds diisopropyl fluorophosphate. J Biol Chem. 1993 Jun 15;268(17):12458–12467. [PubMed] [Google Scholar]
  14. Massoulié J., Pezzementi L., Bon S., Krejci E., Vallette F. M. Molecular and cellular biology of cholinesterases. Prog Neurobiol. 1993 Jul;41(1):31–91. doi: 10.1016/0301-0082(93)90040-y. [DOI] [PubMed] [Google Scholar]
  15. Matthews B. W. Solvent content of protein crystals. J Mol Biol. 1968 Apr 28;33(2):491–497. doi: 10.1016/0022-2836(68)90205-2. [DOI] [PubMed] [Google Scholar]
  16. Rachinsky T. L., Camp S., Li Y., Ekström T. J., Newton M., Taylor P. Molecular cloning of mouse acetylcholinesterase: tissue distribution of alternatively spliced mRNA species. Neuron. 1990 Sep;5(3):317–327. doi: 10.1016/0896-6273(90)90168-f. [DOI] [PubMed] [Google Scholar]
  17. Radić Z., Duran R., Vellom D. C., Li Y., Cervenansky C., Taylor P. Site of fasciculin interaction with acetylcholinesterase. J Biol Chem. 1994 Apr 15;269(15):11233–11239. [PubMed] [Google Scholar]
  18. Radić Z., Pickering N. A., Vellom D. C., Camp S., Taylor P. Three distinct domains in the cholinesterase molecule confer selectivity for acetyl- and butyrylcholinesterase inhibitors. Biochemistry. 1993 Nov 16;32(45):12074–12084. doi: 10.1021/bi00096a018. [DOI] [PubMed] [Google Scholar]
  19. Radić Z., Quinn D. M., Vellom D. C., Camp S., Taylor P. Allosteric control of acetylcholinesterase catalysis by fasciculin. J Biol Chem. 1995 Sep 1;270(35):20391–20399. doi: 10.1074/jbc.270.35.20391. [DOI] [PubMed] [Google Scholar]
  20. Sussman J. L., Harel M., Frolow F., Oefner C., Goldman A., Toker L., Silman I. Atomic structure of acetylcholinesterase from Torpedo californica: a prototypic acetylcholine-binding protein. Science. 1991 Aug 23;253(5022):872–879. doi: 10.1126/science.1678899. [DOI] [PubMed] [Google Scholar]
  21. Sussman J. L., Harel M., Frolow F., Varon L., Toker L., Futerman A. H., Silman I. Purification and crystallization of a dimeric form of acetylcholinesterase from Torpedo californica subsequent to solubilization with phosphatidylinositol-specific phospholipase C. J Mol Biol. 1988 Oct 5;203(3):821–823. doi: 10.1016/0022-2836(88)90213-6. [DOI] [PubMed] [Google Scholar]
  22. Ségalas I., Roumestand C., Zinn-Justin S., Gilquin B., Ménez R., Ménez A., Toma F. Solution structure of a green mamba toxin that activates muscarinic acetylcholine receptors, as studied by nuclear magnetic resonance and molecular modeling. Biochemistry. 1995 Jan 31;34(4):1248–1260. doi: 10.1021/bi00004a019. [DOI] [PubMed] [Google Scholar]
  23. Taylor P., Jacobs N. M. Interaction between bisquaternary ammonium ligands and acetylcholinesterase: complex formation studied by fluorescence quenching. Mol Pharmacol. 1974 Jan;10(1):93–107. [PubMed] [Google Scholar]
  24. Taylor P., Radić Z. The cholinesterases: from genes to proteins. Annu Rev Pharmacol Toxicol. 1994;34:281–320. doi: 10.1146/annurev.pa.34.040194.001433. [DOI] [PubMed] [Google Scholar]
  25. Vellom D. C., Radić Z., Li Y., Pickering N. A., Camp S., Taylor P. Amino acid residues controlling acetylcholinesterase and butyrylcholinesterase specificity. Biochemistry. 1993 Jan 12;32(1):12–17. doi: 10.1021/bi00052a003. [DOI] [PubMed] [Google Scholar]
  26. le Du M. H., Marchot P., Bougis P. E., Fontecilla-Camps J. C. 1.9-A resolution structure of fasciculin 1, an anti-acetylcholinesterase toxin from green mamba snake venom. J Biol Chem. 1992 Nov 5;267(31):22122–22130. doi: 10.2210/pdb1fas/pdb. [DOI] [PubMed] [Google Scholar]
  27. le Du M. H., Marchot P., Bougis P. E., Fontecilla-Camps J. C. Crystals of fasciculin 2 from green mamba snake venom. Preparation and preliminary x-ray analysis. J Biol Chem. 1989 Dec 15;264(35):21401–21402. [PubMed] [Google Scholar]
  28. van den Born H. K., Radić Z., Marchot P., Taylor P., Tsigelny I. Theoretical analysis of the structure of the peptide fasciculin and its docking to acetylcholinesterase. Protein Sci. 1995 Apr;4(4):703–715. doi: 10.1002/pro.5560040410. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Protein Science : A Publication of the Protein Society are provided here courtesy of The Protein Society

RESOURCES