Skip to main content
Protein Science : A Publication of the Protein Society logoLink to Protein Science : A Publication of the Protein Society
. 1996 Apr;5(4):729–741. doi: 10.1002/pro.5560050418

4-Oxalocrotonate tautomerase, a 41-kDa homohexamer: backbone and side-chain resonance assignments, solution secondary structure, and location of active site residues by heteronuclear NMR spectroscopy.

J T Stivers 1, C Abeygunawardana 1, C P Whitman 1, A S Mildvan 1
PMCID: PMC2143398  PMID: 8845763

Abstract

4-Oxalocrotonate tautomerase (4-OT), a homohexamer consisting of 62 residues per subunit, catalyzes the isomerization of unsaturated alpha-keto acids using Pro-1 as a general base (Stivers et al., 1996a, 1996b). We report the backbone and side-chain 1H, 15N, and 13C NMR assignments and the solution secondary structure for 4-OT using 2D and 3D homonuclear and heteronuclear NMR methods. The subunit secondary structure consists of an alpha-helix (residues 13-30), two beta-strands (beta 1, residues 2-8; beta 2, residues 39-45), a beta-hairpin (residues 50-57), two loops (I, residues 9-12; II, 34-38), and two turns (I, residues 30-33; II, 47-50). The remaining residues form coils. The beta 1 strand is parallel to the beta 2 strand of the same subunit on the basis of cross stand NH(i)-NH(j) NOEs in a 2D 15N-edited 1H-NOESY spectrum of hexameric 4-OT containing two 15N-labeled subunits/hexamer. The beta 1 strand is also antiparallel to another beta 1 strand from an adjacent subunit forming a subunit interface. Because only three such pairwise interactions are possible, the hexamer is a trimer of dimers. The diffusion constant, determined by dynamic light scattering, and the rotational correlation time (14.5 ns) estimated from 15N T1/T2 measurements, are consistent with the hexameric molecular weight of 41 kDa. Residue Phe-50 is in the active site on the basis of transferred NOEs to the bound partial substrate 2-oxo-1,6-hexanedioate. Modification of the general base, Pro-1, with the active site-directed irreversible inhibitor, 3-bromopyruvate, significantly alters the amide 15N and NH chemical shifts of residues in the beta-hairpin and in loop II, providing evidence that these regions change conformation when the active site is occupied.

Full Text

The Full Text of this article is available as a PDF (1.3 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abeygunawardana C., Weber D. J., Frick D. N., Bessman M. J., Mildvan A. S. Sequence-specific assignments of the backbone 1H, 13C, and 15N resonances of the MutT enzyme by heteronuclear multidimensional NMR. Biochemistry. 1993 Dec 7;32(48):13071–13080. doi: 10.1021/bi00211a017. [DOI] [PubMed] [Google Scholar]
  2. Abeygunawardana C., Weber D. J., Gittis A. G., Frick D. N., Lin J., Miller A. F., Bessman M. J., Mildvan A. S. Solution structure of the MutT enzyme, a nucleoside triphosphate pyrophosphohydrolase. Biochemistry. 1995 Nov 21;34(46):14997–15005. doi: 10.1021/bi00046a006. [DOI] [PubMed] [Google Scholar]
  3. Chen L. H., Kenyon G. L., Curtin F., Harayama S., Bembenek M. E., Hajipour G., Whitman C. P. 4-Oxalocrotonate tautomerase, an enzyme composed of 62 amino acid residues per monomer. J Biol Chem. 1992 Sep 5;267(25):17716–17721. [PubMed] [Google Scholar]
  4. Clore G. M., Omichinski J. G., Sakaguchi K., Zambrano N., Sakamoto H., Appella E., Gronenborn A. M. High-resolution structure of the oligomerization domain of p53 by multidimensional NMR. Science. 1994 Jul 15;265(5170):386–391. doi: 10.1126/science.8023159. [DOI] [PubMed] [Google Scholar]
  5. Clore G. M., Omichinski J. G., Sakaguchi K., Zambrano N., Sakamoto H., Appella E., Gronenborn A. M. Interhelical angles in the solution structure of the oligomerization domain of p53: correction. Science. 1995 Mar 10;267(5203):1515–1516. doi: 10.1126/science.7878474. [DOI] [PubMed] [Google Scholar]
  6. Clubb R. T., Omichinski J. G., Sakaguchi K., Appella E., Gronenborn A. M., Clore G. M. Backbone dynamics of the oligomerization domain of p53 determined from 15N NMR relaxation measurements. Protein Sci. 1995 May;4(5):855–862. doi: 10.1002/pro.5560040505. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Englander S. W., Kallenbach N. R. Hydrogen exchange and structural dynamics of proteins and nucleic acids. Q Rev Biophys. 1983 Nov;16(4):521–655. doi: 10.1017/s0033583500005217. [DOI] [PubMed] [Google Scholar]
  8. Gagné S. M., Tsuda S., Li M. X., Chandra M., Smillie L. B., Sykes B. D. Quantification of the calcium-induced secondary structural changes in the regulatory domain of troponin-C. Protein Sci. 1994 Nov;3(11):1961–1974. doi: 10.1002/pro.5560031108. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Grzesiek S., Döbeli H., Gentz R., Garotta G., Labhardt A. M., Bax A. 1H, 13C, and 15N NMR backbone assignments and secondary structure of human interferon-gamma. Biochemistry. 1992 Sep 8;31(35):8180–8190. doi: 10.1021/bi00150a009. [DOI] [PubMed] [Google Scholar]
  10. Ikura M., Kay L. E., Bax A. A novel approach for sequential assignment of 1H, 13C, and 15N spectra of proteins: heteronuclear triple-resonance three-dimensional NMR spectroscopy. Application to calmodulin. Biochemistry. 1990 May 15;29(19):4659–4667. doi: 10.1021/bi00471a022. [DOI] [PubMed] [Google Scholar]
  11. Kumar A., Wagner G., Ernst R. R., Wüthrich K. Studies of J-connectives and selective 1H-1H Overhauser effects in H2O solutions of biological macromolecules by two-dimensional NMR experiments. Biochem Biophys Res Commun. 1980 Oct 16;96(3):1156–1163. doi: 10.1016/0006-291x(80)90073-x. [DOI] [PubMed] [Google Scholar]
  12. Kuntz I. D., Jr, Kauzmann W. Hydration of proteins and polypeptides. Adv Protein Chem. 1974;28:239–345. doi: 10.1016/s0065-3233(08)60232-6. [DOI] [PubMed] [Google Scholar]
  13. Marion D., Driscoll P. C., Kay L. E., Wingfield P. T., Bax A., Gronenborn A. M., Clore G. M. Overcoming the overlap problem in the assignment of 1H NMR spectra of larger proteins by use of three-dimensional heteronuclear 1H-15N Hartmann-Hahn-multiple quantum coherence and nuclear Overhauser-multiple quantum coherence spectroscopy: application to interleukin 1 beta. Biochemistry. 1989 Jul 25;28(15):6150–6156. doi: 10.1021/bi00441a004. [DOI] [PubMed] [Google Scholar]
  14. Marion D., Wüthrich K. Application of phase sensitive two-dimensional correlated spectroscopy (COSY) for measurements of 1H-1H spin-spin coupling constants in proteins. Biochem Biophys Res Commun. 1983 Jun 29;113(3):967–974. doi: 10.1016/0006-291x(83)91093-8. [DOI] [PubMed] [Google Scholar]
  15. Mori S., Abeygunawardana C., Johnson M. O., van Zijl P. C. Improved sensitivity of HSQC spectra of exchanging protons at short interscan delays using a new fast HSQC (FHSQC) detection scheme that avoids water saturation. J Magn Reson B. 1995 Jul;108(1):94–98. doi: 10.1006/jmrb.1995.1109. [DOI] [PubMed] [Google Scholar]
  16. Otting G., Wüthrich K. Heteronuclear filters in two-dimensional [1H,1H]-NMR spectroscopy: combined use with isotope labelling for studies of macromolecular conformation and intermolecular interactions. Q Rev Biophys. 1990 Feb;23(1):39–96. doi: 10.1017/s0033583500005412. [DOI] [PubMed] [Google Scholar]
  17. Roper D. I., Subramanya H. S., Shingler V., Wigley D. B. Preliminary crystallographic analysis of 4-oxalocrotonate tautomerase reveals the oligomeric structure of the enzyme. J Mol Biol. 1994 Nov 4;243(4):799–801. doi: 10.1016/0022-2836(94)90050-7. [DOI] [PubMed] [Google Scholar]
  18. Spera S., Ikura M., Bax A. Measurement of the exchange rates of rapidly exchanging amide protons: application to the study of calmodulin and its complex with a myosin light chain kinase fragment. J Biomol NMR. 1991 Jul;1(2):155–165. doi: 10.1007/BF01877227. [DOI] [PubMed] [Google Scholar]
  19. Stivers J. T., Abeygunawardana C., Mildvan A. S., Hajipour G., Whitman C. P., Chen L. H. Catalytic role of the amino-terminal proline in 4-oxalocrotonate tautomerase: affinity labeling and heteronuclear NMR studies. Biochemistry. 1996 Jan 23;35(3):803–813. doi: 10.1021/bi951077g. [DOI] [PubMed] [Google Scholar]
  20. Subramanya H. S., Roper D. I., Dauter Z., Dodson E. J., Davies G. J., Wilson K. S., Wigley D. B. Enzymatic ketonization of 2-hydroxymuconate: specificity and mechanism investigated by the crystal structures of two isomerases. Biochemistry. 1996 Jan 23;35(3):792–802. doi: 10.1021/bi951732k. [DOI] [PubMed] [Google Scholar]
  21. Wishart D. S., Sykes B. D., Richards F. M. Relationship between nuclear magnetic resonance chemical shift and protein secondary structure. J Mol Biol. 1991 Nov 20;222(2):311–333. doi: 10.1016/0022-2836(91)90214-q. [DOI] [PubMed] [Google Scholar]
  22. Wishart D. S., Sykes B. D., Richards F. M. The chemical shift index: a fast and simple method for the assignment of protein secondary structure through NMR spectroscopy. Biochemistry. 1992 Feb 18;31(6):1647–1651. doi: 10.1021/bi00121a010. [DOI] [PubMed] [Google Scholar]
  23. Xue L. A., Talalay P., Mildvan A. S. Studies of the mechanism of the delta 5-3-ketosteroid isomerase reaction by substrate, solvent, and combined kinetic deuterium isotope effects on wild-type and mutant enzymes. Biochemistry. 1990 Aug 14;29(32):7491–7500. doi: 10.1021/bi00484a019. [DOI] [PubMed] [Google Scholar]

Articles from Protein Science : A Publication of the Protein Society are provided here courtesy of The Protein Society

RESOURCES