Skip to main content
Protein Science : A Publication of the Protein Society logoLink to Protein Science : A Publication of the Protein Society
. 1996 Apr;5(4):752–758. doi: 10.1002/pro.5560050420

Two crystal structures of the leupeptin-trypsin complex.

I V Kurinov 1, R W Harrison 1
PMCID: PMC2143399  PMID: 8845765

Abstract

Three-dimensional structures of trypsin with the reversible inhibitor leupeptin have been determined in two different crystal forms. The first structure was determined at 1.7 A resolution with R-factor = 17.7% in the trigonal crystal space group P3(1)21, with unit cell dimensions of a = b = 55.62 A, c = 110.51 A. The second structure was determined at a resolution of 1.8 A with R-factor = 17.5% in the orthorhombic space group P2(1)2(1)2(1), with unit cell dimensions of a = 63.69 A, b = 69.37 A, c = 63.01 A. The overall protein structure is very similar in both crystal forms, with RMS difference for main-chain atoms of 0.27 A. The leupeptin backbone forms four hydrogen bonds with trypsin and a fifth hydrogen bond interaction is mediated by a water molecule. The aldehyde carbonyl of leupeptin forms a covalent bond of 1.42 A length with side-chain oxygen of Ser-195 in the active site. The reaction of trypsin with leupeptin proceeds through the formation of stable tetrahedral complex in which the hemiacetal oxygen atom is pointing out of the oxyanion hole and forming a hydrogen bond with His-57.

Full Text

The Full Text of this article is available as a PDF (680.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bartunik H. D., Summers L. J., Bartsch H. H. Crystal structure of bovine beta-trypsin at 1.5 A resolution in a crystal form with low molecular packing density. Active site geometry, ion pairs and solvent structure. J Mol Biol. 1989 Dec 20;210(4):813–828. doi: 10.1016/0022-2836(89)90110-1. [DOI] [PubMed] [Google Scholar]
  2. Bode W., Schwager P. The refined crystal structure of bovine beta-trypsin at 1.8 A resolution. II. Crystallographic refinement, calcium binding site, benzamidine binding site and active site at pH 7.0. J Mol Biol. 1975 Nov 15;98(4):693–717. doi: 10.1016/s0022-2836(75)80005-2. [DOI] [PubMed] [Google Scholar]
  3. Brtko J., Knopp J., Baker M. E. Inhibition of 3,5,3'-triiodothyronine binding to its receptor in rat liver by protease inhibitors and substrates. Mol Cell Endocrinol. 1993 May;93(1):81–86. doi: 10.1016/0303-7207(93)90142-7. [DOI] [PubMed] [Google Scholar]
  4. Delbaere L. T., Brayer G. D. The 1.8 A structure of the complex between chymostatin and Streptomyces griseus protease A. A model for serine protease catalytic tetrahedral intermediates. J Mol Biol. 1985 May 5;183(1):89–103. doi: 10.1016/0022-2836(85)90283-9. [DOI] [PubMed] [Google Scholar]
  5. Eto I., Grubbs C. J. Separation, purification and N-terminal sequence analysis of a novel leupeptin-sensitive serine endopeptidase present in chemically induced rat mammary tumour. Biochem J. 1992 Apr 1;283(Pt 1):209–216. doi: 10.1042/bj2830209. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. James M. N., Sielecki A. R., Brayer G. D., Delbaere L. T., Bauer C. A. Structures of product and inhibitor complexes of Streptomyces griseus protease A at 1.8 A resolution. A model for serine protease catalysis. J Mol Biol. 1980 Nov 25;144(1):43–88. doi: 10.1016/0022-2836(80)90214-4. [DOI] [PubMed] [Google Scholar]
  7. Jones T. A. Diffraction methods for biological macromolecules. Interactive computer graphics: FRODO. Methods Enzymol. 1985;115:157–171. doi: 10.1016/0076-6879(85)15014-7. [DOI] [PubMed] [Google Scholar]
  8. Kennedy A. R. Potential mechanisms of antitumorigenesis by protease inhibitors. Basic Life Sci. 1993;61:301–307. doi: 10.1007/978-1-4615-2984-2_28. [DOI] [PubMed] [Google Scholar]
  9. Kennedy A. R. Prevention of carcinogenesis by protease inhibitors. Cancer Res. 1994 Apr 1;54(7 Suppl):1999s–2005s. [PubMed] [Google Scholar]
  10. Kishan K. V., Zeelen J. P., Noble M. E., Borchert T. V., Wierenga R. K. Comparison of the structures and the crystal contacts of trypanosomal triosephosphate isomerase in four different crystal forms. Protein Sci. 1994 May;3(5):779–787. doi: 10.1002/pro.5560030507. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Kuramochi H., Nakata H., Ishii S. Mechanism of association of a specific aldehyde inhibitor, leupeptin, with bovine trypsin. J Biochem. 1979 Nov;86(5):1403–1410. doi: 10.1093/oxfordjournals.jbchem.a132657. [DOI] [PubMed] [Google Scholar]
  12. Kurinov I. V., Harrison R. W. Prediction of new serine proteinase inhibitors. Nat Struct Biol. 1994 Oct;1(10):735–743. doi: 10.1038/nsb1094-735. [DOI] [PubMed] [Google Scholar]
  13. Leto G., Tumminello F. M., Gebbia N., Woynarowska B., Bernacki R. J. Antimetastatic activity of adriamycin in combinations with proteinase inhibitors in mice. Anticancer Res. 1990 Jan-Feb;10(1):265–269. [PubMed] [Google Scholar]
  14. Miura K., Sawa T., Takeuchi T., Umezawa H. Effects of enzyme inhibitors in inhibiting the growth and inducing the differentiation of human promyelocytic leukemia cells, HL-60. J Antibiot (Tokyo) 1986 May;39(5):734–735. doi: 10.7164/antibiotics.39.734. [DOI] [PubMed] [Google Scholar]
  15. Ortiz C., Tellier C., Williams H., Stolowich N. J., Scott A. I. Diastereotopic covalent binding of the natural inhibitor leupeptin to trypsin: detection of two interconverting hemiacetals by solution and solid-state NMR spectroscopy. Biochemistry. 1991 Oct 15;30(41):10026–10034. doi: 10.1021/bi00105a030. [DOI] [PubMed] [Google Scholar]
  16. Schröder E., Phillips C., Garman E., Harlos K., Crawford C. X-ray crystallographic structure of a papain-leupeptin complex. FEBS Lett. 1993 Jan 2;315(1):38–42. doi: 10.1016/0014-5793(93)81128-m. [DOI] [PubMed] [Google Scholar]
  17. Steitz T. A., Shulman R. G. Crystallographic and NMR studies of the serine proteases. Annu Rev Biophys Bioeng. 1982;11:419–444. doi: 10.1146/annurev.bb.11.060182.002223. [DOI] [PubMed] [Google Scholar]
  18. Umezawa H. Low-molecular-weight enzyme inhibitors of microbial origin. Annu Rev Microbiol. 1982;36:75–99. doi: 10.1146/annurev.mi.36.100182.000451. [DOI] [PubMed] [Google Scholar]
  19. Umezawa H. Protease inhibitors produced by microorganisms. Acta Biol Med Ger. 1977;36(11-12):1899–1915. [PubMed] [Google Scholar]
  20. Wlodawer A., Nachman J., Gilliland G. L., Gallagher W., Woodward C. Structure of form III crystals of bovine pancreatic trypsin inhibitor. J Mol Biol. 1987 Dec 5;198(3):469–480. doi: 10.1016/0022-2836(87)90294-4. [DOI] [PubMed] [Google Scholar]
  21. Zegers I., Maes D., Dao-Thi M. H., Poortmans F., Palmer R., Wyns L. The structures of RNase A complexed with 3'-CMP and d(CpA): active site conformation and conserved water molecules. Protein Sci. 1994 Dec;3(12):2322–2339. doi: 10.1002/pro.5560031217. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Protein Science : A Publication of the Protein Society are provided here courtesy of The Protein Society

RESOURCES