Skip to main content
Protein Science : A Publication of the Protein Society logoLink to Protein Science : A Publication of the Protein Society
. 1996 May;5(5):802–813. doi: 10.1002/pro.5560050502

Probing the tertiary structure of proteins by limited proteolysis and mass spectrometry: the case of Minibody.

F Zappacosta 1, A Pessi 1, E Bianchi 1, S Venturini 1, M Sollazzo 1, A Tramontano 1, G Marino 1, P Pucci 1
PMCID: PMC2143402  PMID: 8732752

Abstract

A strategy that combines limited proteolysis experiments and mass spectrometric analysis of the fragments generated has been developed to probe protease-accessible sites on the protein surface. This integrated approach has been employed to investigate the tertiary structure of the Minibody, a de novo designed 64-residue protein consisting of a beta-sheet scaffold based on the heavy-chain variable-domain structure of a mouse immunoglobulin and containing two segments corresponding to the hypervariable H1 and H2 regions. The low solubility of the protein prevented a detailed characterization by NMR and/or X-ray. Different proteases were used under strictly controlled conditions and the cleavage sites were mapped onto the anticipated Minibody model, leading to the identification of the most exposed regions. A single-residue mutant was constructed and characterized, following the same procedure, showing a slightly higher correspondence with the predicted model. This strategy can be used to effectively supplement NMR and X-ray investigations of protein tertiary structure, where these procedures cannot provide definitive data, or to verify and refine protein models.

Full Text

The Full Text of this article is available as a PDF (4.3 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arnone M. I., Birolo L., Giamberini M., Cubellis M. V., Nitti G., Sannia G., Marino G. Limited proteolysis as a probe of conformational changes in aspartate aminotransferase from Sulfolobus solfataricus. Eur J Biochem. 1992 Mar 15;204(3):1183–1189. doi: 10.1111/j.1432-1033.1992.tb16745.x. [DOI] [PubMed] [Google Scholar]
  2. Bianchi E., Sollazzo M., Tramontano A., Pessi A. Chemical synthesis of a designed beta-protein through the flow-polyamide method. Int J Pept Protein Res. 1993 Apr;41(4):385–393. doi: 10.1111/j.1399-3011.1993.tb00454.x. [DOI] [PubMed] [Google Scholar]
  3. Bianchi E., Venturini S., Pessi A., Tramontano A., Sollazzo M. High level expression and rational mutagenesis of a designed protein, the minibody. From an insoluble to a soluble molecule. J Mol Biol. 1994 Feb 18;236(2):649–659. doi: 10.1006/jmbi.1994.1174. [DOI] [PubMed] [Google Scholar]
  4. Blundell T. L., Sibanda B. L., Sternberg M. J., Thornton J. M. Knowledge-based prediction of protein structures and the design of novel molecules. 1987 Mar 26-Apr 1Nature. 326(6111):347–352. doi: 10.1038/326347a0. [DOI] [PubMed] [Google Scholar]
  5. Chothia C., Lesk A. M. The relation between the divergence of sequence and structure in proteins. EMBO J. 1986 Apr;5(4):823–826. doi: 10.1002/j.1460-2075.1986.tb04288.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Chothia C., Lesk A. M., Tramontano A., Levitt M., Smith-Gill S. J., Air G., Sheriff S., Padlan E. A., Davies D., Tulip W. R. Conformations of immunoglobulin hypervariable regions. Nature. 1989 Dec 21;342(6252):877–883. doi: 10.1038/342877a0. [DOI] [PubMed] [Google Scholar]
  7. Dower W. J., Miller J. F., Ragsdale C. W. High efficiency transformation of E. coli by high voltage electroporation. Nucleic Acids Res. 1988 Jul 11;16(13):6127–6145. doi: 10.1093/nar/16.13.6127. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Fontana A., Fassina G., Vita C., Dalzoppo D., Zamai M., Zambonin M. Correlation between sites of limited proteolysis and segmental mobility in thermolysin. Biochemistry. 1986 Apr 22;25(8):1847–1851. doi: 10.1021/bi00356a001. [DOI] [PubMed] [Google Scholar]
  9. Gentile F., Salvatore G. Preferential sites of proteolytic cleavage of bovine, human and rat thyroglobulin. The use of limited proteolysis to detect solvent-exposed regions of the primary structure. Eur J Biochem. 1993 Dec 1;218(2):603–621. doi: 10.1111/j.1432-1033.1993.tb18414.x. [DOI] [PubMed] [Google Scholar]
  10. Hubbard S. J., Eisenmenger F., Thornton J. M. Modeling studies of the change in conformation required for cleavage of limited proteolytic sites. Protein Sci. 1994 May;3(5):757–768. doi: 10.1002/pro.5560030505. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Martin F., Toniatti C., Salvati A. L., Ciliberto G., Cortese R., Sollazzo M. Coupling protein design and in vitro selection strategies: improving specificity and affinity of a designed beta-protein IL-6 antagonist. J Mol Biol. 1996 Jan 12;255(1):86–97. doi: 10.1006/jmbi.1996.0008. [DOI] [PubMed] [Google Scholar]
  12. Martin F., Toniatti C., Salvati A. L., Venturini S., Ciliberto G., Cortese R., Sollazzo M. The affinity-selection of a minibody polypeptide inhibitor of human interleukin-6. EMBO J. 1994 Nov 15;13(22):5303–5309. doi: 10.1002/j.1460-2075.1994.tb06864.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Ohguro H., Palczewski K., Walsh K. A., Johnson R. S. Topographic study of arrestin using differential chemical modifications and hydrogen/deuterium exchange. Protein Sci. 1994 Dec;3(12):2428–2434. doi: 10.1002/pro.5560031226. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Pessi A., Bianchi E., Crameri A., Venturini S., Tramontano A., Sollazzo M. A designed metal-binding protein with a novel fold. Nature. 1993 Mar 25;362(6418):367–369. doi: 10.1038/362367a0. [DOI] [PubMed] [Google Scholar]
  15. Schägger H., von Jagow G. Tricine-sodium dodecyl sulfate-polyacrylamide gel electrophoresis for the separation of proteins in the range from 1 to 100 kDa. Anal Biochem. 1987 Nov 1;166(2):368–379. doi: 10.1016/0003-2697(87)90587-2. [DOI] [PubMed] [Google Scholar]
  16. Studier F. W., Moffatt B. A. Use of bacteriophage T7 RNA polymerase to direct selective high-level expression of cloned genes. J Mol Biol. 1986 May 5;189(1):113–130. doi: 10.1016/0022-2836(86)90385-2. [DOI] [PubMed] [Google Scholar]
  17. Suckau D., Mak M., Przybylski M. Protein surface topology-probing by selective chemical modification and mass spectrometric peptide mapping. Proc Natl Acad Sci U S A. 1992 Jun 15;89(12):5630–5634. doi: 10.1073/pnas.89.12.5630. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Tramontano A., Bianchi E., Venturini S., Martin F., Pessi A., Sollazzo M. The making of the minibody: an engineered beta-protein for the display of conformationally constrained peptides. J Mol Recognit. 1994 Mar;7(1):9–24. doi: 10.1002/jmr.300070103. [DOI] [PubMed] [Google Scholar]
  19. Wagner D. S., Melton L. G., Yan Y., Erickson B. W., Anderegg R. J. Deuterium exchange of alpha-helices and beta-sheets as monitored by electrospray ionization mass spectrometry. Protein Sci. 1994 Aug;3(8):1305–1314. doi: 10.1002/pro.5560030817. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Weber P. C. Physical principles of protein crystallization. Adv Protein Chem. 1991;41:1–36. doi: 10.1016/s0065-3233(08)60196-5. [DOI] [PubMed] [Google Scholar]

Articles from Protein Science : A Publication of the Protein Society are provided here courtesy of The Protein Society

RESOURCES