Skip to main content
Protein Science : A Publication of the Protein Society logoLink to Protein Science : A Publication of the Protein Society
. 1996 May;5(5):814–824. doi: 10.1002/pro.5560050503

Sequence replacements in the central beta-turn of plastocyanin.

J A Ybe 1, M H Hecht 1
PMCID: PMC2143404  PMID: 8732753

Abstract

The role of beta-turns in dictating the structure of a beta-barrel protein is assessed by probing the tolerance of the central beta-turn of poplar plastocyanin to substitution by arbitrary sequences. Native plastocyanin binds copper and is colored bright blue. However, when the wild-type Pro47-Ser48-Gly49-Val50 turn sequence is replaced by arbitrary tetrapeptides, the vast majority (92/98 = 94%) of mutant proteins cannot fold into the native blue structure. Characterization of the colorless mutant proteins demonstrates that the majority of substitutions in this type II beta-turn disrupt the native structure severely. Gross structural changes are indicated by major differences in the CD spectra of the mutants relative to the wild-type protein, and by the much larger apparent size of mutant proteins in gel filtration experiments. These mutant proteins do not bind copper. Furthermore, Cys84 forms a disulfide bond readily in the colorless mutant proteins, indicating that it has moved away from the buried position it occupies in the native copper binding site and has become exposed. These results indicate that the central beta-turn in plastocyanin is not merely a default structure arising in response to the surrounding context; rather, sequence information in this turn plays an active role in dictating the location of a chain reversal in the beta-barrel structure. These findings are discussed in terms of their implications for the folding of natural proteins, as well as the design of de novo proteins.

Full Text

The Full Text of this article is available as a PDF (5.9 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Amann E., Brosius J., Ptashne M. Vectors bearing a hybrid trp-lac promoter useful for regulated expression of cloned genes in Escherichia coli. Gene. 1983 Nov;25(2-3):167–178. doi: 10.1016/0378-1119(83)90222-6. [DOI] [PubMed] [Google Scholar]
  2. Brown J. E., Klee W. A. Helix-coil transition of the isolated amino terminus of ribonuclease. Biochemistry. 1971 Feb 2;10(3):470–476. doi: 10.1021/bi00779a019. [DOI] [PubMed] [Google Scholar]
  3. Brunet A. P., Huang E. S., Huffine M. E., Loeb J. E., Weltman R. J., Hecht M. H. The role of turns in the structure of an alpha-helical protein. Nature. 1993 Jul 22;364(6435):355–358. doi: 10.1038/364355a0. [DOI] [PubMed] [Google Scholar]
  4. Carter P., Bedouelle H., Winter G. Improved oligonucleotide site-directed mutagenesis using M13 vectors. Nucleic Acids Res. 1985 Jun 25;13(12):4431–4443. doi: 10.1093/nar/13.12.4431. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Castagnoli L., Vetriani C., Cesareni G. Linking an easily detectable phenotype to the folding of a common structural motif. Selection of rare turn mutations that prevent the folding of Rop. J Mol Biol. 1994 Apr 8;237(4):378–387. doi: 10.1006/jmbi.1994.1241. [DOI] [PubMed] [Google Scholar]
  6. Clarke A. R., Atkinson T., Holbrook J. J. From analysis to synthesis: new ligand binding sites on the lactate dehydrogenase framework. Part II. Trends Biochem Sci. 1989 Apr;14(4):145–148. doi: 10.1016/0968-0004(89)90147-3. [DOI] [PubMed] [Google Scholar]
  7. Craik C. S., Largman C., Fletcher T., Roczniak S., Barr P. J., Fletterick R., Rutter W. J. Redesigning trypsin: alteration of substrate specificity. Science. 1985 Apr 19;228(4697):291–297. doi: 10.1126/science.3838593. [DOI] [PubMed] [Google Scholar]
  8. Dyson H. J., Sayre J. R., Merutka G., Shin H. C., Lerner R. A., Wright P. E. Folding of peptide fragments comprising the complete sequence of proteins. Models for initiation of protein folding. II. Plastocyanin. J Mol Biol. 1992 Aug 5;226(3):819–835. doi: 10.1016/0022-2836(92)90634-v. [DOI] [PubMed] [Google Scholar]
  9. Feng Y. Q., Sligar S. G. Effect of heme binding on the structure and stability of Escherichia coli apocytochrome b562. Biochemistry. 1991 Oct 22;30(42):10150–10155. doi: 10.1021/bi00106a011. [DOI] [PubMed] [Google Scholar]
  10. Getzoff E. D., Cabelli D. E., Fisher C. L., Parge H. E., Viezzoli M. S., Banci L., Hallewell R. A. Faster superoxide dismutase mutants designed by enhancing electrostatic guidance. Nature. 1992 Jul 23;358(6384):347–351. doi: 10.1038/358347a0. [DOI] [PubMed] [Google Scholar]
  11. Gross E. L., Draheim J. E., Curtiss A. S., Crombie B., Scheffer A., Pan B., Chiang C., Lopez A. Thermal denaturation of plastocyanin: the effect of oxidation state, reductants, and anaerobicity. Arch Biochem Biophys. 1992 Nov 1;298(2):413–419. doi: 10.1016/0003-9861(92)90429-z. [DOI] [PubMed] [Google Scholar]
  12. Guss J. M., Bartunik H. D., Freeman H. C. Accuracy and precision in protein structure analysis: restrained least-squares refinement of the structure of poplar plastocyanin at 1.33 A resolution. Acta Crystallogr B. 1992 Dec 1;48(Pt 6):790–811. doi: 10.1107/s0108768192004270. [DOI] [PubMed] [Google Scholar]
  13. Guss J. M., Freeman H. C. Structure of oxidized poplar plastocyanin at 1.6 A resolution. J Mol Biol. 1983 Sep 15;169(2):521–563. doi: 10.1016/s0022-2836(83)80064-3. [DOI] [PubMed] [Google Scholar]
  14. Harrison S. C., Durbin R. Is there a single pathway for the folding of a polypeptide chain? Proc Natl Acad Sci U S A. 1985 Jun;82(12):4028–4030. doi: 10.1073/pnas.82.12.4028. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Houbrechts A., Moreau B., Abagyan R., Mainfroid V., Préaux G., Lamproye A., Poncin A., Goormaghtigh E., Ruysschaert J. M., Martial J. A. Second-generation octarellins: two new de novo (beta/alpha)8 polypeptides designed for investigating the influence of beta-residue packing on the alpha/beta-barrel structure stability. Protein Eng. 1995 Mar;8(3):249–259. doi: 10.1093/protein/8.3.249. [DOI] [PubMed] [Google Scholar]
  16. Hutchinson E. G., Thornton J. M. A revised set of potentials for beta-turn formation in proteins. Protein Sci. 1994 Dec;3(12):2207–2216. doi: 10.1002/pro.5560031206. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Hynes T. R., Hodel A., Fox R. O. Engineering alternative beta-turn types in staphylococcal nuclease. Biochemistry. 1994 May 3;33(17):5021–5030. doi: 10.1021/bi00183a004. [DOI] [PubMed] [Google Scholar]
  18. Hynes T. R., Kautz R. A., Goodman M. A., Gill J. F., Fox R. O. Transfer of a beta-turn structure to a new protein context. Nature. 1989 May 4;339(6219):73–76. doi: 10.1038/339073a0. [DOI] [PubMed] [Google Scholar]
  19. Kamtekar S., Schiffer J. M., Xiong H., Babik J. M., Hecht M. H. Protein design by binary patterning of polar and nonpolar amino acids. Science. 1993 Dec 10;262(5140):1680–1685. doi: 10.1126/science.8259512. [DOI] [PubMed] [Google Scholar]
  20. Kim P. S., Baldwin R. L. A helix stop signal in the isolated S-peptide of ribonuclease A. 1984 Jan 26-Feb 1Nature. 307(5949):329–334. doi: 10.1038/307329a0. [DOI] [PubMed] [Google Scholar]
  21. Koide S., Dyson H. J., Wright P. E. Characterization of a folding intermediate of apoplastocyanin trapped by proline isomerization. Biochemistry. 1993 Nov 23;32(46):12299–12310. doi: 10.1021/bi00097a005. [DOI] [PubMed] [Google Scholar]
  22. Ku J., Schultz P. G. Alternate protein frameworks for molecular recognition. Proc Natl Acad Sci U S A. 1995 Jul 3;92(14):6552–6556. doi: 10.1073/pnas.92.14.6552. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Mattos C., Petsko G. A., Karplus M. Analysis of two-residue turns in proteins. J Mol Biol. 1994 May 20;238(5):733–747. doi: 10.1006/jmbi.1994.1332. [DOI] [PubMed] [Google Scholar]
  24. Munson M., O'Brien R., Sturtevant J. M., Regan L. Redesigning the hydrophobic core of a four-helix-bundle protein. Protein Sci. 1994 Nov;3(11):2015–2022. doi: 10.1002/pro.5560031114. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Parsell D. A., Sauer R. T. The structural stability of a protein is an important determinant of its proteolytic susceptibility in Escherichia coli. J Biol Chem. 1989 May 5;264(13):7590–7595. [PubMed] [Google Scholar]
  26. Predki P. F., Regan L. Redesigning the topology of a four-helix-bundle protein: monomeric Rop. Biochemistry. 1995 Aug 8;34(31):9834–9839. doi: 10.1021/bi00031a003. [DOI] [PubMed] [Google Scholar]
  27. Quinn T. P., Tweedy N. B., Williams R. W., Richardson J. S., Richardson D. C. Betadoublet: de novo design, synthesis, and characterization of a beta-sandwich protein. Proc Natl Acad Sci U S A. 1994 Sep 13;91(19):8747–8751. doi: 10.1073/pnas.91.19.8747. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Regan L., DeGrado W. F. Characterization of a helical protein designed from first principles. Science. 1988 Aug 19;241(4868):976–978. doi: 10.1126/science.3043666. [DOI] [PubMed] [Google Scholar]
  29. Richardson J. S. The anatomy and taxonomy of protein structure. Adv Protein Chem. 1981;34:167–339. doi: 10.1016/s0065-3233(08)60520-3. [DOI] [PubMed] [Google Scholar]
  30. Sanger F., Nicklen S., Coulson A. R. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5463–5467. doi: 10.1073/pnas.74.12.5463. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Sayers J. R., Schmidt W., Eckstein F. 5'-3' exonucleases in phosphorothioate-based oligonucleotide-directed mutagenesis. Nucleic Acids Res. 1988 Feb 11;16(3):791–802. doi: 10.1093/nar/16.3.791. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Scrutton N. S., Berry A., Perham R. N. Redesign of the coenzyme specificity of a dehydrogenase by protein engineering. Nature. 1990 Jan 4;343(6253):38–43. doi: 10.1038/343038a0. [DOI] [PubMed] [Google Scholar]
  33. Skolnick J., Kolinski A. Simulations of the folding of a globular protein. Science. 1990 Nov 23;250(4984):1121–1125. doi: 10.1126/science.250.4984.1121. [DOI] [PubMed] [Google Scholar]
  34. Studier F. W., Rosenberg A. H., Dunn J. J., Dubendorff J. W. Use of T7 RNA polymerase to direct expression of cloned genes. Methods Enzymol. 1990;185:60–89. doi: 10.1016/0076-6879(90)85008-c. [DOI] [PubMed] [Google Scholar]
  35. Vlassi M., Steif C., Weber P., Tsernoglou D., Wilson K. S., Hinz H. J., Kokkinidis M. Restored heptad pattern continuity does not alter the folding of a four-alpha-helix bundle. Nat Struct Biol. 1994 Oct;1(10):706–716. doi: 10.1038/nsb1094-706. [DOI] [PubMed] [Google Scholar]
  36. Wright P. E., Dyson H. J., Lerner R. A. Conformation of peptide fragments of proteins in aqueous solution: implications for initiation of protein folding. Biochemistry. 1988 Sep 20;27(19):7167–7175. doi: 10.1021/bi00419a001. [DOI] [PubMed] [Google Scholar]
  37. Yan Y., Erickson B. W. Engineering of betabellin 14D: disulfide-induced folding of a beta-sheet protein. Protein Sci. 1994 Jul;3(7):1069–1073. doi: 10.1002/pro.5560030709. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Ybe J. A., Hecht M. H. Periplasmic fractionation of Escherichia coli yields recombinant plastocyanin despite the absence of a signal sequence. Protein Expr Purif. 1994 Aug;5(4):317–323. doi: 10.1006/prep.1994.1047. [DOI] [PubMed] [Google Scholar]

Articles from Protein Science : A Publication of the Protein Society are provided here courtesy of The Protein Society

RESOURCES