Abstract
Transgenic swine expressing human HbA contained only one of two types of the anticipated interspecies hybrids, namely H alpha 2 P beta 2 (H = human, P = swine). In an attempt to establish whether the absence of the swine alpha and human beta (P alpha 2 H beta 2) hybrid in vivo is a reflection of the lack of complementarity between the interspecies chains to generate appropriate interfaces, we have undertaken the in vitro assembly of swine alpha and human beta chimeric tetramer. In contrast to the in vivo transgenic swine system, in vitro the hybrid of swine alpha human beta chain is assembled readily and the hybrid exhibits normal cooperative oxygen binding. Both the swine alpha human beta and the human alpha swine beta interspecies hybrids are stable around neutral pH and do not segregate into parent tetramers even when mixed together. On the other hand, nearly complete exchange of P alpha chain of P alpha 2 H beta 2 hybrid occurs in the presence of H alpha chain at pH 6.0 and room temperature, resulting in the formation of HbA. However, very little of such an exchange reaction takes place at pH 7.0. These results suggest that the thermodynamic stability of P alpha 2 H beta 2 hybrid is lower compared to that of HbA. In contrast, P beta chain of H alpha 2 P beta 2 hybrid is refractory to exchange with H beta chain at pH 7.0 as well as at pH 6.0, suggesting that the stability of H alpha 2 P beta 2 is higher compared to that of HbA (H alpha 2 H beta 2). The swine alpha human beta chimeric Hb undergoes subunit exchange reaction with human alpha-chain in the presence of 0.9 M MgCl2, at pH 7.0. This demonstrates the lower thermodynamic stability of the intradimeric interactions of the heterodimer even at neutral pH. A synergistic coupling of the intra- and interdimeric interactions of the swine alpha and human beta chain heterodimer is essential for the thermodynamic stability of the chimeric Hb under the physiological conditions. Accordingly, we speculate that the lower thermodynamic stability of P alpha H beta heterodimer (compared to the homodimers H alpha H beta and P alpha P beta) facilitates its segregation into the homodimers by subunit exchange reaction involving either H alpha or P beta. This molecular aspect by itself or possibly along with other cellular aspects of the swine system results in the absence of P alpha 2 H beta 2 hybrid in transgenic swine expressing HbA.
Full Text
The Full Text of this article is available as a PDF (1.6 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Behringer R. R., Ryan T. M., Reilly M. P., Asakura T., Palmiter R. D., Brinster R. L., Townes T. M. Synthesis of functional human hemoglobin in transgenic mice. Science. 1989 Sep 1;245(4921):971–973. doi: 10.1126/science.2772649. [DOI] [PubMed] [Google Scholar]
- Benesch R. E., Kwong S. Hemoglobin tetramers stabilized by a single intramolecular cross-link. J Protein Chem. 1991 Oct;10(5):503–510. doi: 10.1007/BF01025478. [DOI] [PubMed] [Google Scholar]
- Braunitzer G., Schrank B., Stangl A., Scheithauer U. Hämoglobine, XXI. Die Sequenzanalyse des Hämoglobins des Schweines. Hoppe Seylers Z Physiol Chem. 1978 Feb;359(2):137–146. [PubMed] [Google Scholar]
- Bucci E. Preparation of isolated chains of human hemoglobin. Methods Enzymol. 1981;76:97–106. doi: 10.1016/0076-6879(81)76117-2. [DOI] [PubMed] [Google Scholar]
- Bunn H. F., McDonald M. J. Electrostatic interactions in the assembly of haemoglobin. Nature. 1983 Dec 1;306(5942):498–500. doi: 10.1038/306498a0. [DOI] [PubMed] [Google Scholar]
- Fronticelli C., Gattoni M., Lu A. L., Brinigar W. S., Bucci J. L., Chiancone E. The dimer-tetramer equilibrium of recombinant hemoglobins. Stabilization of the alpha 1 beta 2 interface by the mutation beta(Cys112-->Gly) at the alpha 1 beta 1 interface. Biophys Chem. 1994 Jul;51(1):53–57. doi: 10.1016/0301-4622(94)00028-x. [DOI] [PubMed] [Google Scholar]
- Greaves D. R., Fraser P., Vidal M. A., Hedges M. J., Ropers D., Luzzatto L., Grosveld F. A transgenic mouse model of sickle cell disorder. Nature. 1990 Jan 11;343(6254):183–185. doi: 10.1038/343183a0. [DOI] [PubMed] [Google Scholar]
- Katz D. S., White S. P., Huang W., Kumar R., Christianson D. W. Structure determination of aquomet porcine hemoglobin at 2.8 A resolution. J Mol Biol. 1994 Dec 16;244(5):541–553. doi: 10.1006/jmbi.1994.1751. [DOI] [PubMed] [Google Scholar]
- O'Donnell J. K., Martin M. J., Logan J. S., Kumar R. Production of human hemoglobin in transgenic swine: an approach to a blood substitute. Cancer Detect Prev. 1993;17(2):307–312. [PubMed] [Google Scholar]
- Rao M. J., Iyer K. S., Acharya A. S. Polymerization of hemoglobin S. Quinary interactions of Glu-43(beta). J Biol Chem. 1995 Aug 18;270(33):19250–19255. doi: 10.1074/jbc.270.33.19250. [DOI] [PubMed] [Google Scholar]
- Rao M. J., Schneider K., Chait B. T., Chao T. L., Keller H., Anderson S., Manjula B. N., Kumar R., Acharya A. S. Recombinant hemoglobin A produced in transgenic swine: structural equivalence with human hemoglobin A. Artif Cells Blood Substit Immobil Biotechnol. 1994;22(3):695–700. doi: 10.3109/10731199409117900. [DOI] [PubMed] [Google Scholar]
- Roy R. P., Acharya A. S. Semisynthesis of hemoglobin. Methods Enzymol. 1994;231:194–215. doi: 10.1016/0076-6879(94)31014-9. [DOI] [PubMed] [Google Scholar]
- Ryan T. M., Townes T. M., Reilly M. P., Asakura T., Palmiter R. D., Brinster R. L., Behringer R. R. Human sickle hemoglobin in transgenic mice. Science. 1990 Feb 2;247(4942):566–568. doi: 10.1126/science.2154033. [DOI] [PubMed] [Google Scholar]
- Shaeffer J. R., McDonald M. J., Turci S. M., Dinda D. M., Bunn H. F. Dimer-monomer dissociation of human hemoglobin A. J Biol Chem. 1984 Dec 10;259(23):14544–14547. [PubMed] [Google Scholar]
- Sharma A., Martin M. J., Okabe J. F., Truglio R. A., Dhanjal N. K., Logan J. S., Kumar R. An isologous porcine promoter permits high level expression of human hemoglobin in transgenic swine. Biotechnology (N Y) 1994 Jan;12(1):55–59. doi: 10.1038/nbt0194-55. [DOI] [PubMed] [Google Scholar]
- Sinet M., Bohn B., Guesnon P., Poyart C. Temperature independence of the alkaline Bohr effect in pig red cells and pig haemoglobin solutions. Biochim Biophys Acta. 1982 Nov 9;708(2):105–111. doi: 10.1016/0167-4838(82)90209-6. [DOI] [PubMed] [Google Scholar]
- Swanson M. E., Martin M. J., O'Donnell J. K., Hoover K., Lago W., Huntress V., Parsons C. T., Pinkert C. A., Pilder S., Logan J. S. Production of functional human hemoglobin in transgenic swine. Biotechnology (N Y) 1992 May;10(5):557–559. doi: 10.1038/nbt0592-557. [DOI] [PubMed] [Google Scholar]
- White S. P., Birch P., Kumar R. Interactions at the alpha 1 beta 1 interface in hemoglobin: a single amino acid change affects dimer ratio in transgenic mice expressing human hemoglobin. Hemoglobin. 1994 Nov;18(6):413–426. doi: 10.3109/03630269409045773. [DOI] [PubMed] [Google Scholar]
